• Title/Summary/Keyword: Ullage pressure

Search Result 29, Processing Time 0.025 seconds

Experimental research of Pressure-Volume-Temperature mass gauging method using instantaneous analysis under cryogenic homogeneous condition (순간 해석 기법을 이용한 PVT 잔량 측정법의 극저온 균일 온도 조건에서의 실험적 연구)

  • Seo, Man-Su;Jeong, Sang-Kwon;Jung, Young-Suk;Ku, Dong-Hun;Ji, Dong-Jin
    • Progress in Superconductivity and Cryogenics
    • /
    • v.14 no.1
    • /
    • pp.38-43
    • /
    • 2012
  • In the extreme conditions of launch vehicle in a space, such as cryogenic temperature and low-gravity environment, the mass gauging of remaining propellants becomes a difficult problem. Pressure-volume-temperature (PVT) method is one of the attractive mass gauging methods under low-gravity due to its simplicity and reliability. PVT gauging experiment with various mass flow rates of helium injection is carried out with the experimental apparatus creating cryogenic homogeneous condition as the condition of low-gravity. Experimental results are analyzed by a novel PVT gauging analysis method which considers all instantaneous changes of pressure and temperature in the ullage volume with small time intervals. It is observed that the gauging error from the novel PVT gauging analysis is -0.11% with 2 slpm mass flow rate of helium injection.

Dynamic Characteristic Analysis of KSR-III Propulsion Feeding System (KSR-III 추진기관 공급계 동특성 해석)

  • Jung, Young-Suk;Cho, In-Hyun;Jung, Tae-Kyu;Kwon, Oh-Sung
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.1008-1013
    • /
    • 2001
  • KSR-III propulsion system designed in KARI has a gas-pressurization system for propellant feeding system. This system uses a regulator for the control of the ullage pressure of propellant tank and a venturi for passive control of propellant flowrate. This system seems to be very reliable, but the flowrate of propellant varies according to the change of acceleration with the rocket flight. In this paper, dynamic characteristic of KSR-III propulsion feeding system was analyzed in flight condition. The purpose of this research is to find the variation of off ratio and propellant flowrate change for certification condition of engine reliability test.

  • PDF

A Propellant Loading Analysis Program of Bipropellant Propulsion System (이원추진제 추진계의 추진제 충전 해석 프로그램)

  • Chae, Jong-Won;Han, Cho-Young;Yu, Myoung-Jong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.10
    • /
    • pp.1048-1053
    • /
    • 2009
  • It proposes an simple and intuitive method that calculates the equilibrium pressures of a propellant tank by appling the mass conservation principle on the helium in the liquid propellant and in an ullage volume of the propellant tank. A propellant loading analysis program is developed and validated against the existing reference data. And it has applied to the present developing program, COMS Chemical Propulsion Subsystem and the results are compared, it may use to develop a technology of the next geostationary complex satellite's propulsion system.

Transient Analysis of Pressure Behavior of Cryogenics in Closed Vessel (극저온 저장용기의 내부압력 거동에 대한 비정상해석)

  • 강권호;김길정;박영무
    • Journal of Energy Engineering
    • /
    • v.5 no.1
    • /
    • pp.19-27
    • /
    • 1996
  • Self-pressurization of cylindrical container of cryogen is numerically analyzed. The container is axi-symmetric and heated from side wall with constant heat flux. Natural convection by external heat flux is studied numerically using finite difference method. Oxygen, nytrogen and hydrogen are working fluids in this paper. Liquid is considered incompressible fluid and vapor is assumed to behave as gas meeting with virial equation of gas. The Second virial coefficients of gas are obtained from Lennard-jones model. The important variables which have effects on self-pressurization are external heat flux, heat capacity of wall and initial ullage in container. The most important variable of them is external heat flux. The pressure rise calculated from the virial gas model is slightly different from that calculated using Ideal gas model for oxygen.

  • PDF

Performance Test and Calculation of Recirculation Line in Propellant Feeding System (기체공급계 재순환배관의 성능시험 및 계산)

  • Kwon, Oh-Sung;Cho, Nam-Kyung;Chung, Yong-Gahp;Han, Sang-Yeop;Kim, Young-Mog
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.11 no.2
    • /
    • pp.9-17
    • /
    • 2007
  • The performance test of recirculation line in propellant feeding system was carried out. Liquid oxygen was used as cryogenic propellant and helium was used as recirculation promotion gas. Tests were done in cases at atmospheric pressure and at pressure of 4 barg in the ullage space of propellant tank. Liquid oxygen recirculation flowrate with helium injection flowrate and temperature distribution along the line were measured. There was appropriate helium injection flowrate for gas-lift recirculation system. Test data were used to make calculation program by test data correlation method. In this paper the procedure of calculation was presented and the results were compared to test data.

A Study on the Performance of COMS CPS during LEOP (천리안 위성의 LEOP기간 동안의 추진계 성능 연구)

  • Chae, Jong-Won;Han, Cho-Young;Yu, Myoung-Jong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.3
    • /
    • pp.258-263
    • /
    • 2012
  • In this paper the Chemical Propulsion Subsystem of COMS is briefly explained and some telemetries acquired by a series operations of CPS during the Launch and Early Operation Phase of COMS are presented. The pressure and temperature of pressurant tank telemetries are compared with the results of the developed computer program. The changes in pressure are due to the two major phases. The first one is the initialization phases of CPS composed of the venting phase to vent the helium gas in the pipe network from the downstream of the propellant tanks to the thrusters for safety, the priming phase to fill the vented pipe network with oxidizer and fuel respectively and then the pressurization phase to pressurize the ullage of propellant tank to regulated pressure. And the other is the apogee engine firings in which COMS CPS is in the orbit raising phase to use helium as a pressurant to keep the pressure of propellant tank as the liquid apogee engine get fired until COMS reached to the target orbit. This program can be applicable to prepare basis design data of the next Geostationary Satellite CPS.

Study on Temperature Characteristic of Pressurization System Using Helium Gas (헬륨 가압시스템에 대한 온도특성 연구(II))

  • Chung Yonggahp;Cho Namkyung;Kil Kyoungsub;Kim Youngmog
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • v.y2005m4
    • /
    • pp.168-175
    • /
    • 2005
  • The pressurization system in a liquid rocket propulsion system provides a controlled gas pressure in the ullage space of the vehicle propellant tanks. It is advantage to employ a hot gas heat exchanger in the pressurization system to increase the specific volume of the pressurant and thereby reduce over-all system weight. A significant improvement in pressurization-system performance can be achieved, particularly in a cryogenic system, where the gas supply is stored inside the cryogenic propellant tank. The temperature characteristic of cryogenic pressurant is very important to develop some components in pressurization system. Numerical modeling and Test data were studied using SINDA/FLUINT Program and PTF(Propellant-feeding Test Facility).

  • PDF

Development of Propellant On-Board Feeding System of Pump-fed Liquid Rocket Propulsion System (터보펌프식 발사체 추진기관의 기체공급계 개발)

  • Cho, Nam-Kyung;Jeong, Yong-Gahp;Kwon, Oh-Sung;Han, Sang-Yeop;Kim, Young-Mog
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.122-126
    • /
    • 2006
  • Two types of pressurization system and low weight feeding piping system are developed. With sub-system tests, ullage pressure control performance was verified for 1 step and 2 step pressurization system and the feeding performance of feeding piping system was also verified. The weight of the feeding piping system is low enough for the application of launch vehicle. In addition, LOX conditioning system is developed for avoiding geysering and LOX temperature rise. Integrated performance was verified through integrated on-board feeding system performance tests.

  • PDF

Liquid Oxygen in Feeding Line during Propellant Filling and Holding (산화제 충진 및 대기 과정의 추진제 공급배관 내부 현상)

  • Kwon, Oh-Sung;Cho, Nam-Kyung;Chung, Yong-Gahp;Lee, Joong-Youp
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.34-37
    • /
    • 2007
  • Propellant filling and holding test was carried out using liquid oxygen as a working fluid. The feeding line system has a filter at propellant tank outlet. Vaporization of liquid oxygen during holding after completion of filling and effect of vaporization to recirculation performance in this system was observed. Filling rate and pressure of tank ullage had the effect on state of liquid oxygen in feeding line. There was no geysering in feeding line during holding because of the position of filter.

  • PDF

Study on the Temperature Characteristic of Pressurization System Using Cryogenic Helium Gas (극저온 헬륨가스 가압시스템에 대한 온도특성 연구(I))

  • Chung Yonggahp;Kim Yoo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.9 no.3
    • /
    • pp.66-73
    • /
    • 2005
  • The pressurization system in a liquid rocket propulsion system provides a controlled gas pressure in the ullage space of the vehicle propellant tanks. It is advantage to employ a hot gas heat exchanger in the pressurization system to increase the specific volume of the pressurant and thereby reduce over-all system weight. A significant improvement in pressurization-system performance can be achieved, particularly in a cryogenic system, where the gas supply is stored inside the cryogenic propellant tank. In this study liquid nitrogen was used instead of liquid oxygen as a simulant. The temperature characteristic of cryogenic pressurant is very important to develop some components in pressurization system. Numerical modeling and test data were studied using SINDA/FLUINT Program and PTF(Propellant-feeding Test facility).