• 제목/요약/키워드: Ulam stability

Search Result 355, Processing Time 0.023 seconds

STABILITY OF A QUADRATIC FUNCTIONAL EQUATION IN QUASI-BANACH SPACES

  • Najati, Abbas;Moradlou, Fridoun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.45 no.3
    • /
    • pp.587-600
    • /
    • 2008
  • In this paper we establish the general solution and investigate the Hyers-Ulam-Rassias stability of the following functional equation in quasi-Banach spaces. $${\sum\limits_{{{1{\leq}i<j{\leq}4}\limits_{1{\leq}k<l{\leq}4}}\limits_{k,l{\in}I_{ij}}}\;f(x_i+x_j-x_k-x_l)=2\;\sum\limits_{1{\leq}i<j{\leq}4}}\;f(x_i-x_j)$$ where $I_{ij}$={1, 2, 3, 4}\backslash${i, j} for all $1{\leq}i<j{\leq}4$. The concept of Hyers-Ulam-Rassias stability originated from Th. M. Rassias' stability theorem that appeared in his paper: On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc.

On the Generalized Hyers-Ulam-Rassias Stability for a Functional Equation of Two Types in p-Banach Spaces

  • Park, Kyoo-Hong;Jung, Yong-Soo
    • Kyungpook Mathematical Journal
    • /
    • v.48 no.1
    • /
    • pp.45-61
    • /
    • 2008
  • We investigate the generalized Hyers-Ulam-Rassias stability in p-Banach spaces for the following functional equation which is two types, that is, either cubic or quadratic: 2f(x+3y) + 6f(x-y) + 12f(2y) = 2f(x - 3y) + 6f(x + y) + 3f(4y). The concept of Hyers-Ulam-Rassias stability originated essentially with the Th. M. Rassias' stability theorem that appeared in his paper: On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 72 (1978), 297-300.

LINEAR *-DERIVATIONS ON C*-ALGEBRAS

  • Park, Choonkil;Lee, Jung Rye;Lee, Sung Jin
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.23 no.1
    • /
    • pp.49-57
    • /
    • 2010
  • It is shown that for a derivation $$f(x_1{\cdots}x_{j-1}x_jx_{j+1}{\cdots}x_k)=\sum_{j=1}^{k}x_{1}{\cdots}x_{j-1}x_{j+1}{\cdots}x_kf(x_j)$$ on a unital $C^*$-algebra $\mathcal{B}$, there exists a unique $\mathbb{C}$-linear *-derivation $D:{\mathcal{B}}{\rightarrow}{\mathcal{B}}$ near the derivation, by using the Hyers-Ulam-Rassias stability of functional equations. The concept of Hyers-Ulam-Rassias stability originated from the Th.M. Rassias' stability theorem that appeared in his paper: On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300.

Hyers-Ulam stability problem for an approximately cubic mapping

  • 김학만;전길웅
    • Proceedings of the Korean Society of Computational and Applied Mathematics Conference
    • /
    • 2003.09a
    • /
    • pp.17.2-17
    • /
    • 2003
  • The purpose of this paper is to solve the generalized Hyers-Ulam stability problem for a cubic functional equation 8f(x-y/2)+8f(y-x/2)+2f(x+y)=9f(x)+9f(y) on the basis of a direct method.

  • PDF

STABILITY AND HYPERSTABILITY OF MULTI-ADDITIVE-CUBIC MAPPINGS IN INTUITIONISTIC FUZZY NORMED SPACES

  • Ramzanpour, Elahe;Bodaghi, Abasalt;Gilani, Alireza
    • Honam Mathematical Journal
    • /
    • v.42 no.2
    • /
    • pp.391-409
    • /
    • 2020
  • In the current paper, the intuitionistic fuzzy normed space version of Hyers-Ulam stability for multi-additive, multi-cubic and multi-additive-cubic mappings by using a fixed point method are studied. Moreover, a few corollaries corresponding to some known stability and hyperstability outcomes in intuitionistic fuzzy normed space are presented.

STABILITY OF TRIGONOMETRIC TYPE FUNCTIONAL EQUATIONS IN RESTRICTED DOMAINS

  • Chung, Jae-Young
    • The Pure and Applied Mathematics
    • /
    • v.18 no.3
    • /
    • pp.231-244
    • /
    • 2011
  • We prove the Hyers-Ulam stability for trigonometric type functional inequalities in restricted domains with time variables. As consequences of the result we obtain asymptotic behaviors of the inequalities and stability of related functional inequalities in almost everywhere sense.