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LINEAR ∗-DERIVATIONS ON C∗-ALGEBRAS

Choonkil Park*, Jung Rye Lee**, and Sung Jin Lee***

Abstract. It is shown that for a derivation

f(x1 · · ·xj−1xjxj+1 · · ·xk) =

k∑
j=1

x1 · · ·xj−1xj+1 · · ·xkf(xj)

on a unital C∗-algebra B, there exists a unique C-linear ∗-derivation
D : B → B near the derivation, by using the Hyers-Ulam-Rassias
stability of functional equations. The concept of Hyers-Ulam-Rassias
stability originated from the Th.M. Rassias’ stability theorem that
appeared in his paper: On the stability of the linear mapping in
Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297–300.

1. Introduction

Borelli [1] proved the Hyers-Ulam-Rassias stability problem of the
functional equation

D(xy) = xD(y) + yD(x)

on the interval (0, 1], which is called a derivation, and Páles [5] proved the
stability of the functional equation for real-valued functions on [1,∞).
Tabor [9] investigated the Hyers-Ulam-Rassias stability problem of the
functional equation for Banach space-valued functions and obtained the
following result: Let X be a Banach space with norm ‖ · ‖ and let
f : (0, 1] → X be a mapping and θ > 0. Suppose that

‖f(xy)− xf(y)− yf(x)‖ ≤ θ

for all x, y ∈ (0, 1]. Then there exists a derivation D : (0, 1] → X such
that

‖f(x)−D(x)‖ ≤ 4eθ

for all x ∈ (0, 1].
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Let E1 and E2 be Banach spaces with norms ||·|| and ‖·‖, respectively.
Consider f : E1 → E2 to be a mapping such that f(tx) is continuous in
t ∈ R for each fixed x ∈ E1. Assume that there exist constants θ ≥ 0
and p ∈ [0, 1) such that

‖f(x + y)− f(x)− f(y)‖ ≤ θ(||x||p + ||y||p)

for all x, y ∈ E1. Th.M. Rassias [8] showed that there exists a unique
R-linear mapping T : E1 → E2 such that

‖f(x)− T (x)‖ ≤ 2θ

2− 2p
||x||p

for all x ∈ E1. Găvruta [2] generalized the Th.M. Rassias’ result, and
Park [6] applied the Găvruta’s result to linear functional equations in
Banach modules over a C∗-algebra. See [4, 7] for details.

Throughout this paper, let R+ be the set of nonnegative real numbers
and k an integer greater than 1. Let B be a unital C∗-algebra with norm
‖ · ‖ and unitary group U(B).

In this paper, we prove that for a derivation

f(x1 · · ·xj−1xjxj+1 · · ·xk) =
k∑

j=1

x1 · · ·xj−1xj+1 · · ·xkf(xj)

on a unital C∗-algebra B, there exists a unique C-linear ∗-derivation
D : B → B near the derivation.

2. Stability of linear ∗-derivations on C∗-algebras

We prove the Hyers-Ulam-Rassias stability of linear ∗-derivations on
C∗-algebras.

Theorem 2.1. Let f : B → B be a mapping satisfying

f(x1 · · ·xj−1xjxj+1 · · ·xk) =
k∑

j=1

x1 · · ·xj−1xj+1 · · ·xkf(xj)
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for which there exists a function ϕ : Bk → [0,∞) such that

ϕ̃(x1, · · · , xk) =
∞∑

j=0

k−jϕ(kjx1, · · · , kjxk) < ∞,(i)

‖Tµf(x1, · · · , xk)‖ := ‖f(
k∑

j=1

µxj)− µ
k∑

j=1

f(xj)‖ ≤ ϕ(x1, · · · , xk),

(ii)

‖f(knu∗)− f(knu)∗‖ ≤ ϕ(knu, · · · , knu︸ ︷︷ ︸
k times

)(iii)

for all µ ∈ T1 := {λ ∈ C| |λ| = 1}, all u ∈ U(B), n = 0, 1, · · · , and
all x1, · · · , xk ∈ B. Then there exists a unique C-linear ∗-derivation
D : B → B such that

‖f(x)−D(x)‖ ≤ 1
k
ϕ̃(x, · · · , x︸ ︷︷ ︸

k times

)(iv)

for all x ∈ B.

Proof. Put µ = 1 ∈ T1. Replacing xj by x in (ii) for all j = 1, · · · , k,
we get

‖f(kx)− kf(x)‖ ≤ ϕ(x, · · · , x︸ ︷︷ ︸
k times

)

for all x ∈ B. So one can obtain that

‖f(x)− 1
k
f(kx)‖ ≤ 1

k
ϕ(x, · · · , x︸ ︷︷ ︸

k times

),

and hence

‖ 1
kn

f(knx)− 1
kn+1

f(kn+1x)‖ ≤ 1
kn+1

ϕ(knx, · · · , knx︸ ︷︷ ︸
k times

)

for all x ∈ B. So we get

‖f(x)− 1
kn

f(knx)‖ ≤ 1
k

n−1∑
l=0

1
kl

ϕ(klx, · · · , klx︸ ︷︷ ︸
k times

)(1)

for all x ∈ B.
Let x be an element in B. For positive integers n and m with n > m,

‖ 1
kn

f(knx)− 1
km

f(kmx)‖ ≤ 1
k

n−1∑
l=m

1
kl

ϕ(klx, · · · , klx︸ ︷︷ ︸
k times

),
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which tends to zero as m → ∞ by (i). So { 1
kn f(knx)} is a Cauchy

sequence for all x ∈ B. Since B is complete, the sequence { 1
kn f(knx)}

converges for all x ∈ B. We can define a mapping D : B → B by

D(x) = lim
n→∞

1
kn

f(knx)(2)

for all x ∈ B.
By (i) and (2), we get

‖T1D(x1, · · · , xk)‖ = lim
n→∞

1
kn
‖T1f(knx1, · · · , knxk)‖

≤ lim
n→∞

1
kn

ϕ(knx1, · · · , knxk) = 0

for all x1, · · · , xk ∈ B. Hence T1D(x1, · · · , xk) = 0 for all x1, · · · , xk ∈ B.
But by the assumption f(0) = 0. Putting x3 = · · · = xk = 0, one can
obtain that D is additive. Moreover, by passing to the limit in (1) as
n →∞, we get the inequality (iv).

Now let S : B → B be another additive mapping satisfying

‖f(x)− S(x)‖ ≤ 1
k
ϕ̃(x, · · · , x︸ ︷︷ ︸

k times

)

for all x ∈ B.

‖D(x)− S(x)‖ =
1
kl
‖D(klx)− S(klx)‖

≤ 1
kl
‖D(klx)− f(klx)‖+

1
kl
‖f(klx)− S(klx)‖

≤ 2
k

1
kl

ϕ̃(klx, · · · , klx︸ ︷︷ ︸
k times

),

which tends to zero as l → ∞ by (i). Thus D(x) = S(x) for all x ∈ B.
This proves the uniqueness of D.

By the assumption, for each µ ∈ T1,

‖f(knµx)− kµf(kn−1x)‖ ≤ ϕ(kn−1x, · · · , kn−1x︸ ︷︷ ︸
k times

)

for all x ∈ B. And one can show that

‖µf(knx)− kµf(kn−1x)‖ ≤ |µ| · ‖f(knx)− kf(kn−1x)‖
≤ ϕ(kn−1x, · · · , kn−1x︸ ︷︷ ︸

k times

)
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for all µ ∈ T1 and all x ∈ B. So

‖f(knµx)− µf(knx)‖ ≤‖f(knµx)− kµf(kn−1x)‖
+ ‖kµf(kn−1x)− µf(knx)‖

≤ϕ(kn−1x, · · · , kn−1x︸ ︷︷ ︸
k times

) + ϕ(kn−1x, · · · , kn−1x︸ ︷︷ ︸
k times

)

for all µ ∈ T1 and all x ∈ B. Thus k−n‖f(knµx) − µf(knx)‖ → 0 as
n →∞ for all µ ∈ T1 and all x ∈ B. Hence

D(µx) = lim
n→∞

f(knµx)
kn

= lim
n→∞

µf(knx)
kn

= µD(x)

for all µ ∈ T1 and all x ∈ B.
Now let λ ∈ C (λ 6= 0) and M an integer greater than 4|λ|. Then

| λ
M | < 1

4 < 1 − 2
3 = 1

3 . By [3, Theorem 1], there exist three elements
µ1, µ2, µ3 ∈ T1 such that 3 λ

M = µ1 + µ2 + µ3. And D(x) = D(3 · 1
3x) =

3D(1
3x) for all x ∈ B. So D(1

3x) = 1
3D(x) for all x ∈ B. Thus

D(λx) = D(
M

3
· 3 λ

M
x) = M ·D(

1
3
· 3 λ

M
x) =

M

3
D(3

λ

M
x)

=
M

3
D(µ1x + µ2x + µ3x) =

M

3
(D(µ1x) + D(µ2x) + D(µ3x))

=
M

3
(µ1 + µ2 + µ3)D(x) =

M

3
· 3 λ

M
D(x)

= λD(x)

for all x ∈ B. Hence

D(αx + βy) = D(αx) + D(βy) = αD(x) + βD(y)

for all α, β ∈ C(α, β 6= 0) and all x, y ∈ B. And D(0x) = 0 = 0D(x)
for all x ∈ B. So the unique additive mapping D : B → B is a C-linear
mapping.

It follows from (2) that

D(x) = lim
n→∞

f(kknx)
kkn
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for all x ∈ B. Since f(x1 · · ·xj · · ·xk) =
∑k

j=1 x1 · · ·xj−1xj+1 · · ·xkf(xj),

D(x1 · · ·xj−1xjxj+1 · · ·xk) = lim
n→∞

f(kknx1 · · ·xk)
kkn

= lim
n→∞

f(knx1 · · · knxk)
k(k−1)n · kn

= lim
n→∞

k(k−1)n
∑k

j=1 x1 · · ·xj−1xj+1 · · ·xkf(knxj)

k(k−1)n · kn

=
k∑

j=1

x1 · · ·xj−1xj+1 · · ·xkD(xj)

for all x1, · · · , xk ∈ B.
By (i) and (iii), we get

D(u∗) = lim
n→∞

f(knu∗)
kn

= lim
n→∞

(f(knu))∗

kn
= ( lim

n→∞

f(knu)
kn

)∗

= D(u)∗(3)

for all u ∈ U(B).
Now let x ∈ B (x 6= 0) and M an integer greater than 4|x|. Then

| x

M
| = 1

M
|x| < |x|

4|x|
=

1
4

< 1− 2
3

=
1
3
.

By [3, Theorem 1], there exist three elements u1, u2, u3 ∈ U(B) such that
3 x

M = u1 + u2 + u3. Thus by (3)

D(x∗) = D(
M

3
· 3x∗

M
) =

M

3
D((3

x

M
)∗)

=
M

3
D(u∗1 + u∗2 + u∗3) =

M

3
(D(u∗1) + D(u∗2) + D(u∗3))

=
M

3
(D(u1)∗ + D(u2)∗ + D(u3)∗)

=
M

3
(D(u1) + D(u2) + D(u3))∗

=
M

3
D(u1 + u2 + u3)∗ = D(

M

3
3

x

M
)∗

= D(x)∗

for all x ∈ B. Hence the additive mapping D : B → B is a C-linear
∗-derivation satisfying the inequality (iv), as desired.
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Corollary 2.2. Let f : B → B be a mapping satisfying

f(x1 · · ·xj−1xjxj+1 · · ·xk) =
k∑

j=1

x1 · · ·xj−1xj+1 · · ·xkf(xj)

for which there exist constants θ ≥ 0 and p ∈ [0, 1) such that

‖f(
k∑

j=1

µxj)− µ
k∑

j=1

f(xj)‖ ≤ θ
k∑

j=1

‖xj‖p,

‖f(knu∗)− f(knu)∗‖ ≤ k · knpθ

for all µ ∈ T1, all u ∈ U(B), n = 0, 1, · · · , and all x1, · · · , xk ∈ B. Then
there exists a unique C-linear ∗-derivation D : B → B such that

‖f(x)−D(x)‖ ≤ kθ

k − kp
‖x‖p

for all x ∈ B.

Proof. Define ϕ(x1, · · · , xk) = θ
∑k

j=1 ‖xj‖p, and apply Theorem 2.1.

Theorem 2.3. Let f : B → B be a mapping satisfying

f(x1 · · ·xj−1xjxj+1 · · ·xk) =
k∑

j=1

x1 · · ·xj−1xj+1 · · ·xkf(xj)

for which there exists a function ϕ : Bk → [0,∞) satisfying (i) and (iii)
such that

‖f(
k∑

j=1

µxj)− µ
k∑

j=1

f(xj)‖ ≤ ϕ(x1, · · · , xk)(v)

for µ = 1, i, and all x1, · · · , xk ∈ B. If f(tx) is continuous in t ∈ R
for each fixed x ∈ B, then there exists a unique C-linear ∗-derivation
D : B → B satisfying the inequality (iv).

Proof. Put µ = 1 in (v). By the same reasoning as the proof of Theo-
rem 2.1, there exists a unique additive mapping D : B → B satisfying the
inequality (iv). By the same reasoning as in the proof of [8, Theorem],
the additive mapping D : B → B is R-linear.

Put µ = i in (v). By the same method as the proof of Theorem 2.1,
one can obtain that

D(ix) = lim
n→∞

f(knix)
kn

= lim
n→∞

if(knx)
kn

= iD(x)
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for all x ∈ B.
For each element λ ∈ C, λ = η + iν, where η, ν ∈ R. So

D(λx) = D(ηx + iνx) = ηD(x) + νD(ix) = ηD(x) + iνD(x)

= λD(x)

for all λ ∈ C and all x ∈ B. So

D(αx + βy) = D(αx) + D(βy) = αD(x) + βD(y)

for all α, β ∈ C, and all x, y ∈ B. Hence the additive mapping D : B → B
is C-linear.

The rest of the proof is the same as the proof of Theorem 2.1.

Remark 2.4. Suppose that B is not unital. If the inequalities (iii) in
Theorems 2.1 and 2.3 are replaced by

‖f(x∗)− f(x)∗‖ ≤ ϕ(x, · · · , x︸ ︷︷ ︸
k times

)

for all x ∈ B, then the results do also hold. The proofs are similar to
the proofs of Theorems 2.1 and 2.3.
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