• Title/Summary/Keyword: Ubiquitin protease

Search Result 29, Processing Time 0.027 seconds

A Novel Ubiqutin C-terminal Hydrolase (UCH-9) from Chick Skeletal Muscle: Its Purification and Charaterization

  • U, Seong-Gyun;Baek, Seong-Hui;Sin, Dong-Hun;Kim, Hye-Seon;Yu, Yeong-Jun;Jo, Jung-Myeong;Gang, Man-Sik;Jeong, Jin-Ha
    • Animal cells and systems
    • /
    • v.1 no.2
    • /
    • pp.323-328
    • /
    • 1997
  • We have previously shown that chick muscle extracts contained at least 10 different ubiquitin C-terminal hydrolases (UCHs). In the present studies, one of the enzymes, called UCH-9, was purified by conventional chromatographic procedures using $^{125}l$-labeled ubiquitin-${\alpha}$NH-MHISPPEPESEEEEE HYC (Ub-PESTc) as a substrate. The purified enzyme behaved as a 27-kDa protein under both denaturing and nondenaturing conditions, suggesting that it consists of a single polypeptide chain. It was maximally active at pHs between 7 and 8.5, but showed little or no activity at pH below 6 and above 10. Lice other UCHs, its activity was strongly inhibited by sulfhydryl blocking reagents, such as iodoacetamide, and by Ub-aldehyde. In addition to Ub-PESTc, UCH-9 hydrolyzed Ub-aNH-protein extensions, including Ub-${\alpha}NH$-carboxyl extension protein of 80 amino acids and Ubo-${\alpha}NH$-dihydrofolate reductase. However, this enzyme was not capable of generating free Ub from mono-Ub-${\varepsilon}NH$-protein conjugates and from branched poly-Ub chains that are ligated to proteins through ${\varepsilon}NH$-isopeptide bonds. This enzyme neither could hydrolyze poly-His-tagged di-Ub. These results suggest that UCH-9 may play an important role in production of free Ub and ribosomal proteins from their conjugates.

  • PDF

Expression and Purification of Recombinant Human Epidermal Growth Factor Using Fusion Partners in Escherichia coli (융합 파트너를 이용한 인간 상피세포성장인자의 재조합 대장균에서 발현과 정제 연구)

  • Sung, Keehyun;Kim, In Ho
    • Korean Chemical Engineering Research
    • /
    • v.56 no.5
    • /
    • pp.711-717
    • /
    • 2018
  • Human epidermal growth factor (hEGF) can stimulate the division of various cell types and has potential clinical applications. Since the protein contains three intra-molecular disulfide bonds, the high expression of active hEGF in Escherichia coli has not been well researched, We fused the hEGF gene with a small ubiquitin-related modifier gene (SUMO) by synthesizing an artificial SUMO-hEGF fusion gene that was highly expressed in E. coli (DE3) strain. The optimal expression level of the soluble fusion protein, SUMO-hEGF with IPTG (Isopropyl-${\beta}$-D-Thiogalactopyranoside), was up to 38.9% of the total cellular protein. The fusion protein was purified by Ni-NTA affinity chromatography and cleaved by a SUMO-specific protease to obtain the native hEGF, which was further purified by Ni-NTA affinity chromatography. The result of the reverse-phase HPLC showed that the purity of the recombinant cleaved hEGF was greater than 98%.

Transcription Profiles of Human Cells in Response to Sodium Arsenite Exposure

  • Lee, Te-Chang;Konan Peck;Yih, Ling-Huei
    • Toxicological Research
    • /
    • v.17
    • /
    • pp.59-69
    • /
    • 2001
  • Arsenic exposure is associated with several human diseases, including cancers, atherosclerosis, hypertension, and cerebrovascular diseases. In cultured cells, arsenite, an inorganic arsenic com-pound, was demonstrated to interfere with many physiological functions, such as enhancement of oxidative stress, delay of cell cycle progression, and induction of structural and numerical changes of chromosomes. The objective of this study is to investigate the effects of arsenic exposure on gene expression profiles by colorimetric cDNA microarray technique. HFW (normal human diploid skin fibroblasts), CL3 (human lung adenocarcinoma cell line), and HaCaT (immortalized human keratinocyte cell line) were treated with 5 $\mu\textrm{M}$ or 10 $\mu\textrm{M}$ sodium arsenite for 6 or 16 h, respectively. By a dual-color detection system, the expression profile of arsenite-treated cultures was compared to that of control cultures. Several genes expressed differentially were identified on the microarray membranes. For example, MDM2, SWI/SNF, ubiquitin specific protease 4, MAP3K11, RecQ protein-like 5, and Ribosomal protein Ll0a were consistently induced in all three cell types by arsenite, whereas prohibitin, cyclin D1, nucleolar protein 1, PCNA, Nm23, and immediate early protein (ETR101) were apparently inhibited. The present results suggest that arsenite insults altered the expression of several genes participating in cellular responses to DNA damage, stress, transcription, and cell cycle arrest.

  • PDF

Proteasome Function Is Inhibited by Polyglutamine-expanded Ataxin-1, the SCA1 Gene Product

  • Park, Yongjae;Hong, Sunghoi;Kim, Sung-Jo;Kang, Seongman
    • Molecules and Cells
    • /
    • v.19 no.1
    • /
    • pp.23-30
    • /
    • 2005
  • Spinocerebellar ataxia type 1 (SCA1) is an autosomal-dominant neurodegenerative disorder caused by expansion of the polyglutamine tract in the SCA1 gene product, ataxin-1. Using d2EGFP, a short-lived enhanced green fluorescent protein, we investigated whether polyglutamine-expanded ataxin-1 affects the function of the proteasome, a cellular multicatalytic protease that degrades most misfolded proteins and regulatory proteins. In Western blot analysis and immunofluorescence experiments, d2EGFP was less degraded in HEK 293T cells transfected with ataxin-1(82Q) than in cells transfected with lacZ or empty vector controls. To test whether the stability of the d2EGFP protein was due to aggregation of ataxin-1, we constructed a plasmid carrying $ataxin-1-{\Delta}114$, lacking the self-association region (SAR), and examined degradation of the d2EGFP. Both the level of $ataxin-1-{\Delta}114$ aggregates and the amount of d2EGFP were drastically reduced in cells containing $ataxin-1-{\Delta}114$. Furthermore, d2EGFP localization experiments showed that polyglutamine-expanded ataxin-1 inhibited the general function of the proteasome activity. Taken together, these results demonstrate that polyglutamine-expanded ataxin-1 decreases the activity of the proteasome, implying that a disturbance in the ubiquitin-proteasome pathway is directly involved in the development of spinocerebellar ataxia type1.

p53 signaling is involved in leptin-induced growth of hepatic and breast cancer cells

  • Shrestha, Mohan;Park, Pil-Hoon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.20 no.5
    • /
    • pp.487-498
    • /
    • 2016
  • Leptin, an adipokine predominantly produced from adipose tissue, is well known to induce tumor growth. However, underlying molecular mechanisms are not established yet. While p53 has long been well recognized as a potent tumor suppressor gene, accumulating evidence has also indicated its potential role in growth and survival of cancer cells depending on experimental environments. In the present study, we examined if p53 signaling is implicated in leptin-induced growth of cancer cells. Herein, we demonstrated that leptin treatment significantly increased p53 protein expression in both hepatic (HepG2) and breast (MCF-7) cancer cells without significant effect on mRNA expression. Enhanced p53 expression by leptin was mediated via modulation of ubiquitination, in particular ubiquitin specific protease 2 (USP2)-dependent manner. Furthermore, gene silencing of p53 by small interfering RNA (siRNA) suppressed leptin-induced growth of hepatic and breast cancer cells, indicating the role of p53 signaling in tumor growth by leptin. In addition, we also showed that knockdown of p53 restored suppression of caspase-3 activity by leptin through modulating Bax expression and prevented leptin-induced cell cycle progression, implying the involvement of p53 signaling in the regulation of both apoptosis and cell cycle progression in cancer cells treated with leptin. Taken together, the results in the present study demonstrated the potential role of p53 signaling in leptin-induced tumor growth.

USP44 Promotes the Tumorigenesis of Prostate Cancer Cells through EZH2 Protein Stabilization

  • Park, Jae Min;Lee, Jae Eun;Park, Chan Mi;Kim, Jung Hwa
    • Molecules and Cells
    • /
    • v.42 no.1
    • /
    • pp.17-27
    • /
    • 2019
  • Ubiquitin-specific protease 44 (USP44) has been implicated in tumor progression and metastasis across various tumors. However, the function of USP44 in prostate cancers and regulatory mechanism of histone-modifying enzymes by USP44 in tumors is not well-understood. Here, we found that enhancer of zeste homolog 2 (EZH2), a histone H3 lysine 27 methyltransferase, is regulated by USP44. We showed that EZH2 is a novel target of USP44 and that the protein stability of EZH2 is upregulated by USP44-mediated deubiquitination. In USP44 knockdown prostate cancer cells, the EZH2 protein level and its gene silencing activity were decreased. Furthermore, USP44 knockdown inhibited the tumorigenic characteristics and cancer stem cell-like behaviors of prostate cancer cells. Inhibition of tumorigenesis caused by USP44 knockdown was recovered by ectopic introduction of EZH2. Additionally, USP44 regulates the protein stability of oncogenic EZH2 mutants. Taken together, our results suggest that USP44 promotes the tumorigenesis of prostate cancer cells partly by stabilizing EZH2 and that USP44 is a viable therapeutic target for treating EZH2-dependent cancers.

UHRF1 Induces Methylation of the TXNIP Promoter and Down-Regulates Gene Expression in Cervical Cancer

  • Kim, Min Jun;Lee, Han Ju;Choi, Mee Young;Kang, Sang Soo;Kim, Yoon Sook;Shin, Jeong Kyu;Choi, Wan Sung
    • Molecules and Cells
    • /
    • v.44 no.3
    • /
    • pp.146-159
    • /
    • 2021
  • DNA methylation, and consequent down-regulation, of tumour suppressor genes occurs in response to epigenetic stimuli during cancer development. Similarly, human oncoviruses, including human papillomavirus (HPV), up-regulate and augment DNA methyltransferase (DNMT) and histone deacetylase (HDAC) activities, thereby decreasing tumour suppressor genes (TSGs) expression. Ubiquitin-like containing PHD and RING finger domain 1 (UHRF1), an epigenetic regulator of DNA methylation, is overexpressed in HPV-induced cervical cancers. Here, we investigated the role of UHRF1 in cervical cancer by knocking down its expression in HeLa cells using lentiviral-encoded short hairpin (sh)RNA and performing cDNA microarrays. We detected significantly elevated expression of thioredoxin-interacting protein (TXNIP), a known TSG, in UHRF1-knockdown cells, and this gene is hypermethylated in cervical cancer tissue and cell lines, as indicated by whole-genome methylation analysis. Up-regulation of UHRF1 and decreased TXNIP were further detected in cervical cancer by western blot and immunohistochemistry and confirmed by Oncomine database analysis. Using chromatin immunoprecipitation, we identified the inverted CCAAT domain-containing UHRF1-binding site in the TXNIP promoter and demonstrated UHRF1 knockdown decreases UHRF1 promoter binding and enhances TXNIP expression through demethylation of this region. TXNIP promoter CpG methylation was further confirmed in cervical cancer tissue by pyrosequencing and methylation-specific polymerase chain reaction. Critically, down-regulation of UHRF1 by siRNA or UHRF1 antagonist (thymoquinone) induces cell cycle arrest and apoptosis, and ubiquitin-specific protease 7 (USP7), which stabilises and promotes UHRF1 function, is increased by HPV viral protein E6/E7 overexpression. These results indicate HPV might induce carcinogenesis through UHRF1-mediated TXNIP promoter methylation, thus suggesting a possible link between CpG methylation and cervical cancer.

Transcriptional Upregulation of Plasminogen Activator Inhibitor-1 in Rat Primary Astrocytes by a Proteasomal Inhibitor MG132

  • Cho, Kyu Suk;Kwon, Kyoung Ja;Jeon, Se Jin;Joo, So Hyun;Kim, Ki Chan;Cheong, Jae Hoon;Bahn, Geon Ho;Kim, Hahn Young;Han, Seol Heui;Shin, Chan Young;Yang, Sung-Il
    • Biomolecules & Therapeutics
    • /
    • v.21 no.2
    • /
    • pp.107-113
    • /
    • 2013
  • Plasminogen activator inhibitor-1 (PAI-1) is a member of serine protease inhibitor family, which regulates the activity of tissue plasminogen activator (tPA). In CNS, tPA/PAI-1 activity is involved in the regulation of a variety of cellular processes such as neuronal development, synaptic plasticity and cell survival. To gain a more insights into the regulatory mechanism modulating tPA/PAI-1 activity in brain, we investigated the effects of proteasome inhibitors on tPA/PAI-1 expression and activity in rat primary astrocytes, the major cell type expressing both tPA and PAI-1. We found that submicromolar concentration of MG132, a cell permeable peptide-aldehyde inhibitor of ubiquitin proteasome pathway selectively upregulates PAI-1 expression. Upregulation of PAI-1 mRNA as well as increased PAI-1 promoter reporter activity suggested that MG132 transcriptionally increased PAI-1 expression. The induction of PAI-1 downregulated tPA activity in rat primary astrocytes. Another proteasome inhibitor lactacystin similarly increased the expression of PAI-1 in rat primary astrocytes. MG132 activated MAPK pathways as well as PI3K/Akt pathways. Inhibitors of these signaling pathways reduced MG132-mediated upregulation of PAI-1 in varying degrees and most prominent effects were observed with SB203580, a p38 MAPK pathway inhibitor. The regulation of tPA/PAI-1 activity by proteasome inhibitor in rat primary astrocytes may underlie the observed CNS effects of MG132 such as neuroprotection.