• Title/Summary/Keyword: UWB application

Search Result 78, Processing Time 0.022 seconds

Band-Rejected UWB Antenna Using Unit Cells of FSS (FSS 단위 셀을 이용한 대역저지 UWB 안테나)

  • Lee, Chang Yong;Jung, Chang Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.7
    • /
    • pp.3431-3436
    • /
    • 2013
  • Band-notched ultra-wideband (UWB) antennas using frequency selective surfaces (FSSs) are presented. The proposed antennas utilized the band rejection characteristic of typical FSS unit cells. We loaded the FSS unit cells on the same plane of planar UWB antenna. These antennas are designed to reject the interference from the wireless local area network band, 5.15-5.825 GHz in the UWB band, 3.1-10.6 GHz. The measured peak gains of the proposed antennas are more than 2 dBi at both operation edge and center frequencies, and sufficient to apply for commercial purpose. The antennas are small size and planar shape for the purpose of the small mobile application, and enhanced design freedom by using various existing FSS unit cells.

A Low Power Single-End IR-UWB CMOS Receiver for 3~5 GHz Band Application (3~5 GHz 광대역 저전력 Single-Ended IR-UWB CMOS 수신기)

  • Ha, Min-Cheol;Park, Byung-Jun;Park, Young-Jin;Eo, Yun-Seong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.7
    • /
    • pp.657-663
    • /
    • 2009
  • A fully integrated single ended IR-UWB receiver is implemented using 0.18 ${\mu}m$ CMOS technology. The UWB receiver adopts the non-coherent architecture, which simplifies the RF architecture and reduces power consumption. The receiver consists of single-ended 2-stage LNAs, S2D, envelope detector, VGA, and comparator. The measured results show that sensitivity is -80.8 dBm at 1 Mbps and BER of $10^{-3}$. The receiver uses no external balun and the chip size is only $1.8{\times}0.9$ mm. The consumed current is very low with 13 mA at 1.8 V supply and the energy per bit performance is 23.4 nJ/bit.

A Compact UWB Planar Antenna with WLAN Band-Notch Characteristic

  • Park, Dong-Kook;Kwak, Byung-Haw
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.7
    • /
    • pp.857-862
    • /
    • 2007
  • A novel compact ultra wideband(UWB) antenna for UWB application is proposed in this paper. The proposed antenna with $22mm{\times}26mm{\times}1.6mm$ covers the entire UWB bandwidth and has band notch characteristic for the frequency band of $5.15{\sim}5.825GHz$ limited by WLAN. The antenna has a concaved ground plane and staircase shape patch to achieve the wide bandwidth, and has an U shape slot with $\lambda/4$ length to notch the band. The return loss and group delay of the proposed antenna are measured.

Improvement of Ultra-wideband Link Performance over Bands Requiring Interference Mitigation in Korea

  • Rateb, Ahmad M.;Syed-Yusof, Syarifah Kamilah;Fisal, Norsheila
    • ETRI Journal
    • /
    • v.32 no.1
    • /
    • pp.44-52
    • /
    • 2010
  • Ultra-wideband (UWB) systems have witnessed a debate over whether they may cause interference to other existing and future narrowband systems sharing their band of operation. The detect and avoid (DAA) mechanism was developed as a solution to reduce interference to narrowband systems in order to ease regulatory concerns. It works by adaptively reducing the transmitted power at the overlapping bands upon detecting an active narrowband link. However, employing DAA degrades the performance of UWB transmissions. In this paper, we present the Korean UWB regulations as an example of regulations that require DAA in certain bands. We investigate DAA's impact on performance and propose a method to mitigate it, which provides UWB with the more efficient support of the DAA mechanism and enables it to avoid a larger number of narrowband users while sustaining the data rate. Results show significant improvement in performance with the application of our technique compared to conventional performance.

Study of the Technical Regulation of Radio Equipment about Ultra Wide Band (초광대역 무선기기 기술기준에 관한 연구)

  • Kang, Young-Jin;Kim, Sun-Yeob
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.10
    • /
    • pp.6264-6269
    • /
    • 2014
  • This study examined the state of the UWB frequency band of foreign policy for application to domestic findings. The results confirmed that the UWB frequency can be prescribed mainly for use in a communication service area, unlike foreign countries, such as the United States and Europe for the current technology standard. On the other hand, the expansion of the UWB service area to various fields may appear as interference in the domestic industry protection and enable these rules. Therefore, the UWB frequency should be used in other areas except for broadcast and communication, if the output meets the specified criteria, as in the case of a foreign country. This is thought to be helpful for protecting the domestic industry and activated services.

Design of UWB MIMO Antenna for On-Body Application (인체 부착형 UWB MIMO 안테나 설계)

  • Joo, Eunman;Kwon, Kyeol;Jeon, Jaesung;Kim, Sunwoo;Choi, Jaehoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.2
    • /
    • pp.137-148
    • /
    • 2014
  • In this paper, design of a UWB MIMO antenna for an on-body application is proposed and antenna performance with body effect and the impact on the human body are investigated. The proposed MIMO antenna is composed of UWB antenna above ground plane and an additional plunger shaped isolator located between the two monopole antennas to enhance the isolation characteristic. The simulation and measurement are performed to analyze the effect of the human body on antenna performance when the human body is located in the near field of the antenna. According to the measurement results, the measured SAR values for antennas 1 and 2 are 0.132 W/kg and 0.08 W/kg, respectively when 0.5 mW input power is delivered. These values satisfy the FCC guideline which ragulates that the 1-g average SAR should be lower than 1.6 W/kg.

Collision Avoidance Method for Coexistence between Relay-Based Multi-Hop UWB System (UWB기반 다중 홉 선박 네트워크간의 공존을 위한 충돌 회피 기술)

  • Kim, Jin-Woo;Park, Jong-Hwan;Lee, Seong Ro
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.8
    • /
    • pp.688-695
    • /
    • 2014
  • In a small wireless environment, such as your home or office, a various network using WiMedia PHY can be mixed. Because these networks operate independently for each application, data conflict can occur between adjacent networks. To avoid data conflict, the resource in a different time zone can be utilized. However, if devices in a network increase, available resources in the network decrease, and then the lack of resources necessary to provide service can occur. To solve this problem, we propose collision avoidacne scheme for coexistence of various UWB systems. In this paper, we evaluate the performance of the proposed scheme through simulation.

Application of SVD on Suppression of IEEE 802.11a Interference in TH-PAM UWB Systems

  • Xu, Shaoyi;Bai, Zhiquan;Yang, Qinghai;Kwak, Kyung-Sup
    • ETRI Journal
    • /
    • v.29 no.2
    • /
    • pp.237-239
    • /
    • 2007
  • Interference from IEEE 802.11a systems affects ultra-wideband (UWB) systems significantly. In this letter, we suggest a novel narrow-band interference (NBI) suppression technique based on the singular value decomposition (SVD) algorithm in time-hopping pulse amplitude modulation (TH-PAM) UWB systems. The SVD algorithm is used to approximate the interference which then is subtracted from the received signals. In contrast to the conventional notch filter and rake receiver, our method is more effective and the receiver complexity can be greatly reduced.

  • PDF

A 3-5 GHz Non-Coherent IR-UWB Receiver

  • Ha, Min-Cheol;Park, Young-Jin;Eo, Yun-Seong
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.8 no.4
    • /
    • pp.277-282
    • /
    • 2008
  • A fully integrated inductorless CMOS impulse radio ultra-wideband (IR-UWB) receiver is implemented using $0.18\;{\mu}m$ CMOS technology for 3-5 GHz application. The UWB receiver adopts the non-coherent architecture, which removes the complexity of RF architecture and reduces power consumption. The receiver consists of inductorless differential three stage LNA, envelope detector, variable gain amplifier (VGA), and comparator. The measured sensitivity is -70 dBm in the condition of 5 Mbps and BER of $10^{-3}$. The receiver chip size is only $1.8\;mm\;{\times}\;0.9\;mm$. The consumed current is 15 mA with 1.8 V supply.