• 제목/요약/키워드: UWB 주파수 대역

Search Result 132, Processing Time 0.02 seconds

Performance Analysis of M-ary PPM UWB Suitable to FCC Signal Spectrum (FCC 신호 스펙트럼에 적합한 M-ary PPM UWB 시스템의 성능분석)

  • ;;Brant Parr
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.8A
    • /
    • pp.633-643
    • /
    • 2003
  • UWB impulse radio signals have an very short duration, extremely wide bandwidth and share the same frequency spectrum with other existing systems. It was determined by the Federal Communications Commission (FCC) that UWB systems could cause interference with other systems, such as Global Positioning System (GPS) for example. Therefore, at present. the FCC has restricted the use of UWB systems to frequencies above 3.1㎓. In this paper, We evaluated performance of UWB system using proposed pulses in [1][2] that are strictly limited in time to remove interference while, at the same time, contain their power distribution to a frequency band from 3.1㎓ to 10.6㎓. In particular, We evaluated the BER Performance in relation to system parameters such as pulse duration. $\delta$, the number of users. Nu. and the number of symbols, M. We found the optimal pulse duration $\delta$ through computer simulation using developed UWB pulses in [1][2]. It is shown that performance evaluation between the UWB communication system using these UWB pulses [1][2]and the Gaussian monocycle pulse in M-ary PPM and BPSK schemes. These results can be contributed to construct M-ary PPM UWB communication system in terms of multiuser parameters and pulse duration.

A 3-5GHz frequency band Programmable Impulse Radio UWB Transmitter (3-5 GHz 대역 중심 주파수 변환이 가능한 프로그래머블 임펄스 래디오 송신기)

  • Han, Hong-Gul;Kim, Tae-Wook
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.49 no.6
    • /
    • pp.35-40
    • /
    • 2012
  • This paper has proposed a 3~5 GHz IR-UWB low power transmitter for range detection application. Proposed transmitter which has been implemented in a $0.13{\mu}m$ CMOS technology is all digital circuit that consist of simple digital logic. this feature insure low complexity and low power consumption. In addition, center frequency can be changed by adopting voltage controlled delay cell for avoiding existing another radio frequency in UWB low band. Proposed circuit consume only 10pJ/b from 1.2 V supply voltage. The simulation results show 3.3~4.3 GHz center frequency controllability, -51 dBm/MHz maximum output power and is satisfied with FCC regulation.

A Detection Algorithm Study of the Victim Signal for the DAA Regulation in MB-OFDM UWB System (MB-OFDM UWB 시스템에서 DAA 기술 기준 적용을 위한 피 간섭 신호 검출 방안 연구)

  • Shin, Cheol-Ho;Choi, Sang-Sung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.12
    • /
    • pp.1297-1307
    • /
    • 2009
  • The purpose of this paper is to propose a detection algorithm and a tracking algorithm based on silent time using MB-OFDM UWB(Multi-Band Orthogonal Frequency Division Multiplexing Ultra Wide Band) receiver in order to satisfy DAA(Detect And Avoid) regulation of Korea to permit UWB in 3.1~4.8 GHz. In DAA regulation of Korea, if UWB device receives a signal more than -80 dBm/MHz from the victim system during UWB operation, the UWB system should avoid the collision within 2 sec. In this paper, we proposed the detection algorithm to detect the victim signal received by -80 dBm/MHz for the avoidance process that changes the operating UWB frequency to other UWB frequency and the subcarrier tracking algorithm to follow up the subcarrier positions of the victim signal for the tonenulling avoidance process that decreases the TX power of subcarriers occupied by the victim signal by -70 dBm/MHz. The performance of the detection algorithm and the tracking algorithm suggested in this paper is verified in simulation results considering various conditions.

Design and Implementation of Antennas for UWB Communications (UWB 통신을 위한 안테나 설계 및 구현)

  • Chae, Jeong-Sik;Ham, Jong-Wan;Jeong, Dae-Ryeong;Jung, Hoe-Kyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.05a
    • /
    • pp.497-498
    • /
    • 2011
  • In 21 century, we use a variety of new wireless technologies focuses on broadcasting and Communications. Because of widely spread wireless-service, demand a lot of frequency. It requires various wireless access technologies. Especially UWB, SER, Millimeter Wave etc. Among them, UWB can use wide Frequency band, because it is different from Non-traditional approach which Frequency Band Using the exclusive rights granted by. Furthermore, it does not cause interference to other existing frequency, therefore this technology is attracting attention. In this paper, describe study on a UWB technology, design about useable antenna for UWB communication.

  • PDF

Implementation of DS-UWB Impulse Generator with Suppression of Frequency Band for WLAN (WLAN 주파수 대역이 억제된 DS-UWB 임펄스 생성기 구현)

  • Park, Chong-Dae;Kim, Bum-Joo;Kim, Dong-Ho
    • Journal of Advanced Navigation Technology
    • /
    • v.10 no.1
    • /
    • pp.13-19
    • /
    • 2006
  • In this paper, Gaussian impulse generator for DS-UWB was proposed and fabricated so that the frequency band allocated to WLAN, around 5 GHz, was suppressed in accordance with the regulation of radiation spectrum limitation defined by FCC. In order to transform an unipolar rectangular signal to a Gaussian impulse, the proposed impulse generator consists of two stage impulse generation parts; the first stage using dual SRD and the second stage using gain switching of semiconductor laser diode. The result shows a gaussian impulse as narrow as 180 psec in width. In addition, high order derivative Gaussian filter with a structure of 4 stage ring resonators was designed and fabricated so that DS-UWB impulse generator could reduce the frequency spectrum of WLAN by 25 dB compared to the spectral power of th adjacent UWB band.

  • PDF

Planar Monopole Antenna with Modified Ground Plane for UWB Communications (UWB 통신을 위한 변형된 접지 면을 갖는 평판형 모노폴 안테나)

  • Kim, Hyun-Chul;Jung, Jin-Woo;Lee, Hyeon-Jin;Lim, Yeong-Seog
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.3
    • /
    • pp.275-281
    • /
    • 2011
  • In this paper, we proposed the small planar monopole antenna with modified ground plane for UWB communications. The proposed antenna not only shows Ultra-Wideband characteristic(3.1~10.6 GHz) suitable for UWB communications but has partially notched-band characteristic to reject 5 GHz WLAN band(5.15~5.35 GHz, 5.470~5.825 GHz). The proposed antenna improved impedance matching through two slits on ground plane, and the rejection band was induced by two ${\lambda}$/4 open stubs on center of two slits. Fabricated antenna satisfied VSWR${\leq}$2 in 2.88~10.83 GHz except for the band rejection of 5.08~5.83 GHz.

Band-Rejected UWB Antenna Using Unit Cells of FSS (FSS 단위 셀을 이용한 대역저지 UWB 안테나)

  • Lee, Chang Yong;Jung, Chang Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.7
    • /
    • pp.3431-3436
    • /
    • 2013
  • Band-notched ultra-wideband (UWB) antennas using frequency selective surfaces (FSSs) are presented. The proposed antennas utilized the band rejection characteristic of typical FSS unit cells. We loaded the FSS unit cells on the same plane of planar UWB antenna. These antennas are designed to reject the interference from the wireless local area network band, 5.15-5.825 GHz in the UWB band, 3.1-10.6 GHz. The measured peak gains of the proposed antennas are more than 2 dBi at both operation edge and center frequencies, and sufficient to apply for commercial purpose. The antennas are small size and planar shape for the purpose of the small mobile application, and enhanced design freedom by using various existing FSS unit cells.

CPW-fed UWB Monopole Paper Antenna (CPW 급전 UWB 모노폴 종이 안테나)

  • Park, Dong-Kook
    • Journal of IKEEE
    • /
    • v.25 no.4
    • /
    • pp.607-612
    • /
    • 2021
  • This paper presents a novel CPW-fed UWB monopole paper antenna made by paper and copper tape. Through the simulation, the optimized antenna design parameters were obtained, and an antenna having an omni-directional radiation pattern and a gain of 2.2 dBi or more in the UWB frequency band of 3.1-10.6 GHz was designed. The antenna was manufactured using general A4 paper and copper tape, and the measurement result satisfies the return loss of -10dB or less in the UWB frequency band and confirm that the return loss characteristic was maintained even when the antenna plane was bent by 3 mm in the longitudinal direction. The proposed antenna is a wearable device that can provide services in the UWB band, and can be manufactured inexpensively by printing it with a conductive print on paper. So it can be used as a wearable antenna for UWB communication in various application fields such as logistics and disposable terminals.

DS-CDMA Ultra Wide Band RF 트랜시버 구현 및 성능 평가

  • Lee, Il-Gyu;Han, Sang-Cheol
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2005.08a
    • /
    • pp.422-426
    • /
    • 2005
  • 초고속통신, 고 정밀 위치정보 시스템 등을 구현하기 위해 광 대역 특성을 요구하는 UWB(Ultra Wideband) 시스템에 대한 연구가 활발히 진행되고 있다. 본 논문에서는 DS-CDMA(Direct Sequence - Code Division Multiple Access)를 근간으로 하는 3 GHz $\sim$ 5GHz의 주파수 대역을 갖는 UWB 시스템에서 아날로그 QPSK(Quadrature Phase Shift Keying) 변복조, 주파수 변환 및 전력 증폭 기능을 수행하는 RF 트랜시버 설계 방안을 제시하였고, 광 대역 특성을 만족하는 주요 구성 성분들의 설계 방법 및 성능 특성을 분석하였다. 상용 부품 및 제작된 부품 들을 이용하여 구현된 RF 트랜시버에 대한 성능평가를 통해 DS-CDMA 방식의 UWB 시스템을 위한 RF 트랜시버 설계 및 구현 접근 방법을 검증하였다.

  • PDF

Design of the Wideband Notched Compact UWB Antenna (넓은 대역폭이 소거된 소형 UWB 안테나 설계)

  • Kim, Cheol-Bok;Lim, Jung-Sup;Lee, Ho-Sang;Jang, Jae-Sam;Jung, Young-Ho;Jo, Dong-Ki;Lee, Mun-Soo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.9
    • /
    • pp.54-62
    • /
    • 2007
  • In this paper, a novel wideband notched compact UWB antenna is designed to satisfy the licensed UWB frequency bandwidth($3.1{\sim}4.8$ GHz, $7.1{\sim}10.2$ GHz) by symmetrically arranging two adjacent sectorial loop antennas. The wideband($4.8{\sim}7.1$ GHz) notch can be obtained by inserting the inverted-L shaped slits on the patch. The designed UWB antenna has return loss lower than -10dB at 3.1 GHz and over, group delay value lower than 1 ns and the linear phase property. The optimized UWB antenna inserted the inverted-L shaped slits has return loss great than -10dB, 5 ns of group delay, nonlinear phase and decreased gain properties over the frequency band, 4.8 GHz to 7.1 GHz.