• Title/Summary/Keyword: UVC irradiation

Search Result 12, Processing Time 0.024 seconds

Studies on decomposition behavior of oxalic acid waste by UVC photo-Fenton advanced oxidation process

  • Kim, Jin-Hee;Lee, Hyun-Kyu;Park, Yoon-Ji;Lee, Sae-Binna;Choi, Sang-June;Oh, Wonzin;Kim, Hak-Soo;Kim, Cho-Rong;Kim, Ki-Chul;Seo, Bum-Chul
    • Nuclear Engineering and Technology
    • /
    • v.51 no.8
    • /
    • pp.1957-1963
    • /
    • 2019
  • A UVC photo-Fenton advanced oxidation process (AOP) was studied to develop a process for the decomposition of oxalic acid waste generated in the chemical decontamination of nuclear power plants. The oxalate decomposition behavior was investigated by using a UVC photo-Fenton reactor system with a recirculation tank. The effects of the three operational variables-UVC irradiation, H2O2 and Fenton reagent-on the oxalate decomposition behavior were experimentally studied, and the behavior of the decomposition product, CO2, was observed. UVC irradiation of oxalate resulted in vigorous CO2 bubbling, and the irradiation dose was thought to be a rate-determining variable. Based on the above results, the oxalate decomposition kinetics were investigated from the viewpoint of radical formation, propagation, and termination reactions. The proposed UVC irradiation density model, expressed by the first-order reaction of oxalate with the same amount of H2O2 consumption, satisfactorily predicted the oxalate decomposition behavior, irrespective of the circulate rate in the reactor system within the experimental range.

Evaluation of Viral Inactivation Efficacy of a Continuous Flow Ultraviolet-C Reactor (UVivatec) (연속 유동 Ultraviolet-C 반응기(UVivatec)의 바이러스 불활화 효과 평가)

  • Bae, Jung-Eun;Jeong, Eun-Kyo;Lee, Jae-Il;Lee, Jeong-Im;Kim, In-Seop;Kim, Jong-Su
    • Microbiology and Biotechnology Letters
    • /
    • v.37 no.4
    • /
    • pp.377-382
    • /
    • 2009
  • Viral safety is an important prerequisite for clinical preparations of all biopharmaceuticals derived from plasma, cell lines, or tissues of human or animal origin. To ensure the safety, implementation of multiple viral clearance (inactivation and/or removal) steps has been highly recommended for manufacturing of biopharmaceuticals. Of the possible viral clearance strategies, Ultraviolet-C (UVC) irradiation has been known as an effective viral inactivating method. However it has been dismissed by biopharmaceutical industry as a result of the potential for protein damage and the difficulty in delivering uniform doses. Recently a continuous flow UVC reactor (UVivatec) was developed to provide highly efficient mixing and maximize virus exposure to the UV light. In order to investigate the effectiveness of UVivatec to inactivate viruses without causing significant protein damage, the feasibility of the UVC irradiation process was studied with a commercial therapeutic protein. Recovery yield in the optimized condition of $3,000\;J/m^2$ irradiation was more than 98%. The efficacy and robustness of the UVC reactor was evaluated with regard to the inactivation of human immunodeficiency virus (HIV), hepatitis A virus (HAV), bovine herpes virus (BHV), bovine viral diarrhea virus (BVDV), porcine parvovirus (PPV), bovine parvovirus (BPV), minute virus of mice (MVM), reovirus type 3 (REO), and bovine parainfluenza virus type 3 (BPIV). Non enveloped viruses (HAV, PPV, BPV, MVM, and REO) were completely inactivated to undetectable levels by $3,000\;J/m^2$ irradiation. Enveloped viruses such as HIV, BVDV, and BPIV were completely inactivated to undetectable levels. However BHV was incompletely inactivated with slight residual infectivity remaining even after $3,000\;J/m^2$ irradiation. The log reduction factors achieved by UVC irradiation were ${\geq}3.89$ for HIV, ${\geq}5.27$ for HAV, 5.29 for BHV, ${\geq}5.96$ for BVDV, ${\geq}4.37$ for PPV, ${\geq}3.55$ for BPV, ${\geq}3.51$ for MVM, ${\geq}4.20$ for REO, and ${\geq}4.15$ for BPIV. These results indicate that UVC irradiation using UVivatec was very effective and robust in inactivating all the viruses tested.

Similarity of Intracellular Signaling Toward Apoptosis Following UVB and UVC Irradiation

  • Horikawa, Miwa;Matsuda, Naoki;Yoshida, Masahiro;Okumura, Yutaka;Watanabe, Masami;Mori, Toshio
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.482-484
    • /
    • 2002
  • UV irradiation activates various intracellular signaling pathways causing cell death in a DNA damage-dependent and an independent manner. As DNA photoproducts, major forms of DNA damage, are maximally formed by UV light at 260-nm, short wavelength UV (UVC) is more harmful than middle wavelength UV (UVB). However, the differences or similarities in responses of DNA damage-independent intracellular signaling molecules to UVB and UVC are not elucidated. We examined activation of signaling molecules towards apoptosis in normal human fibroblastic cells after irradiation with UVB or UVC at a dose generating the equal amount of DNA photoproducts. Both UVB and UVC induced transient phosphorylation of ERK and sustained phosphorylation of p38. Phosphorylation of p53 at Ser15 and at Ser392 residues were also observed, which were inhibited by a phosphoinositide 3-kinase inhibitor, wortmannin. In contrast, an antioxidant N-acetyl-cysteine and a p38 inhibitor SB203580 suppressed only Ser392 phosphorylation, suggesting that UV-induced oxidative stress and p38 activation were involved in the phosphorylation of this site. The apoptic signals such as mitochondrial cytochrome C release and annexin V binding were then observed. Overall, no difference was found in chronological responses of p53, MAPK, and apoptosis between UVB-irradiated and UVC-irradiated cells. These results suggested that DNA damage-independent intracellular signaling molecules similarly responded to UVB and UVC when the equal level of DNA photoproducts were generated.

  • PDF

A Study of Antibacterial Efficiency according to Direction of UV Irradiation in Cosmetic Case

  • Jeong, Jae Young;Hwang, You Jin
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.2
    • /
    • pp.119-124
    • /
    • 2021
  • In this study, we propose an antibacterial efficiency according to the direction of UV irradiation. In the experiment, we measured the effective irradiation angle of UVC using S.aureus, a Gram-positive bacterium, and the variation of the antibacterial region according to the distance according to the direction of ultraviolet irradiation. Also, as a method to increase the antibacterial efficiency during horizontal irradiation of ultraviolet rays, we tested reflecting leaking UVC. As a result, the angle of ultraviolet irradiation was measured smaller than the product description, and in the case of the antibacterial area according to the direction of ultraviolet irradiation, the distance from the sample was increased during vertical irradiation, and the antibacterial area was increased as the distance from the sample was closer during horizontal irradiation. In addition, it was confirmed that antibacterial efficiency can be increased by reflecting leaking UVC during horizontal irradiation of UVC.

Experimental Study on the Irradiation and Surface Sterilization Effect of Ultra Violet Ray in Air Conditioning System (공조시스템에서 UV Ray의 조사 및 표면살균성능에 관한 실험적 연구)

  • 홍진관
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.3
    • /
    • pp.250-257
    • /
    • 2004
  • Recently, the use of UVC lamps inside building air-conditioning system has been increasing in both medical and nonmedical buildings for the control of environmental microorganisms. In the present study, irradiance performance test of UVC lamp was carried out and surface sterilization effect of UV ray was investigated by using UV ray irradiation experimental chamber and pilot system. Experimental results show that the effective irradiance of UVC lamp is strongly dependent on air velocity and temperature with exception of relative huminity in air-conditioning system. An individual microbiological kill effectiveness experiment also shows that the fractional kill of two microbiological samples such as E. Coli and Legionella is roughly the same as the estimated fractional kill in the case of chamber test and pilot system test.

Antiapoptotic Effects Induced by Different Wavelengths of Ultraviolet Light

  • Ibuki, Yuko;Goto, Rensuke
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.485-487
    • /
    • 2002
  • Cells receive signals for survival as well as death, and the balance between the two ultimately determines the fate of the cells. UV-triggered apoptotic signaling has been well documented, whereas UV-induced survival effects have received little attention. We have reported previously that UVB irradiation prevented apoptosis, which was partly dependent on activation of the phosphatidylinositol 3-kinase (PI3-kinase)/ Akt pathway. In this study, anti-apoptotic effects of UV with different wavelength ranges, UVA, UVB and UVC, were examined. NIH3T3 cells showed apoptotic cell death by detachment from the extracellular matrix under serum-free conditions, which was prevented by all wavelengths. However, the effect of UVA was less than those of UVB and UVC. Reduction of mitochondrial transmembrane potential and activation of caspase-9 and -3 were suppressed by all three wavelengths of UV, showing wavelength-dependent effects as mentioned above. The PI3-kinase inhibitor wortmannin partially inhibittrl the UVB and UVC-induced suppression of apoptosis, but not the inhibitoty effect of UVA. The Akt phosphotylation by UVB and UVC was completely inhibittrl by addition of wortmannin, but that by UVA was not P38 MAP kinase inhibitor SB203580 partially inhibited the UVB and UVC-induced suppression of apoptosis and Akt phosphotylation, and completely inhibited UVA-induced those. These results suggested the existence of two different survival pathways leading to suppression of apoptosis, one for UVA that is independent of the PI3-kinase/Akt pathway and dependent on p38 MAP kinase, and the other for UVB and UVC that is dependent on both pathways.

  • PDF

Fabrication of a Water Sterilization System Utilizing a 275 nm-wavelength UVC LED and TIR Lens-equipped Light Source (275 nm UVC LED와 TIR 렌즈 장착 광원을 이용하는 물 살균장치 제작)

  • Kawan Anil;Seung Hui Yu;Seung Hoon Yu;J. A. Park;I. S. Shin;S. J. Lee;Y. B. Kim;Y. B. Kown;D. G. Han;Soon Jae Yu;Heetae Kim;Seong Bae Park
    • Journal of the Semiconductor & Display Technology
    • /
    • v.23 no.1
    • /
    • pp.84-87
    • /
    • 2024
  • A water sterilization system is developed utilizing a 275 nm-wavelength LED light source equipped with a TIR lens. The system's light source is constructed by combining a 275 nm-wavelength UVC LED, known for its germicidal properties, with a TIR lens having a direction angle of 6.8 degrees. The optical simulation software 'LightTools' is employed to design and optimize the intensity of deep ultraviolet sterilizing light irradiation, its distribution, and sterilization capacity. In the inactivation experiment with E. coli, the water sterilizer system achieved a sterilization rate of 78.92 % while maintaining a water flow capacity of 50 L/min. Compared to the conventional mercury lamp light source water sterilizer system, the UVC LED water sterilizer system addresses environmental concerns related to mercury usage and offers advantages in terms of lifespan and durability.

  • PDF

Surface Modification of PET Irradiated by Ultra-Violet (Part II) - Transformation of moisture properties and physical Properties - (UV조사를 통한 PET의 표면개질(제2보) -수분특성 및 물리적 특성 변화-)

  • Choi Hae Young;Lee Jung Soon
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.29 no.5 s.142
    • /
    • pp.617-625
    • /
    • 2005
  • The purpose of this study was to develop functional and environment-friendly polyester fabric by irradiating Ultra-Violet, which was produced by the low-pressure mercury lamp. UV irradiation was conducted with various treatment times and distances. Also, pretreatments of solvents and photoinitiator were used to improve the surface modification effects. The effects of UV irradiation on the moisture regain were found to increase gradually with increase of UV treatment time and decrease of treatment distance. Compared the effects of UVC and UVA, UVC was more effective than UVA. Moisture regain and wicking of PET was increased after UV treatment in our experimental condition. And owing to increasing of moisture regain, static charge was decreased. Pretreatment of solvents such as methanol, ethyl ether and addition of photoinitiator such as Benzophenone accelerated surface modification. The moisture regain was increased but wicking was decreased with pretreatment and addition of photoinitiatior. Therefore it is considered as inappropriate f3r clothing because of wicking effects. Yellowness, tensile strength and elasticity slightly decreased after UV irradiation.

Repair of UV-induced Cyclobutane Pyrimidine Dimers in Human Mitochonrial DNA-less Cells

  • Ikushima, Takaji;Gu, Ning;Tanizaki, Yuichi
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.479-481
    • /
    • 2002
  • UV-induced DNA damage causes cell killing and mutations leading to carcinogenesis. In normal human cells, UV damage such as cyclobutane pyrimidine dimers (CPDs) and primidine-prymidone (6-4) photoproducts are mainly repaired by nucleotide excision repair mechanism. The molecular processes have been well characterized recently. To know the influence of mitochondrial genome on the nucleotide excision repair mechanism against CPDs, we comparatively examined the production of CPDs by UVC irradiation and their repair kinetics in human cells completely lacking mitochondrial DNA (mtDNA) and the parental HeLa S cells. Whole DNA extracted from the cells exposed to UVC was treated with T4-endonuclease V to break the phosphodiester bond adjacent to CPDs. The DNA was electrophoresed in a denaturing agarose gel, which was visualized by ethidium bromide staining. The relative amount of CPDs was determined by image analysis using NIH Image software. MtDNA- less (rho-O) cells were apparently more sensitive to UVC than HeLa S cells, while the level of induction of CPDs in rho-O and HeLa cells was comparable. The repair of CPDs was less efficient in rho-O cells compared with HeLa cells. The residual amount of CPDs after 24-h repair was larger in rho-O cells than in HeLa cells where more than 90 % of CPDs were repaired by then. The non-repaired CPDs would lead to apoptosis in rho-O cells. These results suggest that mitochondrial genome may contribute to some ATP-dependent steps in nucletide excision repair by supplying sufficient ATP which is generated through a respiratory chain in mitochondria.

  • PDF

Surface Modification of PET Irradiated by Ultra-Violet (Part I) -Transformation of Chemical Structure and Surface Properties- (UV조사를 통한 PET의 표면개질 (제1보) -화학구조 변화 및 표면특성 변화-)

  • Choi Hae Young;Lee Jung Soon
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.29 no.3_4 s.141
    • /
    • pp.561-568
    • /
    • 2005
  • The irradiation of Ultra-Violet (UV) is an efficient treatment for polymer to improve hydrophilic properties. 4-Channel PET knit fabrics were treated with UVA and UVC to develop functional and environment-friendly fabric. The fabric was treated with various treatment times and distances from UV lamps having different wavelength. FT-IR and XPS investigated the chemical changes. To confirm the change of surface properties, contact angle, surface energy and SEM were examined. The study of UV as a treatment for PET knit fabric shows significant changes in chemical and surface properties, which is proved by analyses. FT-IR and XPS analyses prove the augmentation of carboxylic, Hydrophilic groups on the surfaces treated by UV. The increase of water contact angle and surface energy means more water wettable and surface energy of PET film was substantially increased by UV irradiation time. The ageing after surface treatment had little influence on the surface energy of the irradiated PET film. SEM proves the surface modification of PET such as etching, bubble and crack. The negative effects are increased in accordance with increasing treatment time.