• Title/Summary/Keyword: UVA

Search Result 243, Processing Time 0.03 seconds

Mannosylerythritol lipids ameliorate ultraviolet A-induced aquaporin-3 downregulation by suppressing c-Jun N-terminal kinase phosphorylation in cultured human keratinocytes

  • Bae, Il-Hong;Lee, Sung Hoon;Oh, Soojung;Choi, Hyeongwon;Marinho, Paulo A.;Yoo, Jae Won;Ko, Jae Young;Lee, Eun-Soo;Lee, Tae Ryong;Lee, Chang Seok;Kim, Dae-Yong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.23 no.2
    • /
    • pp.113-120
    • /
    • 2019
  • Mannosylerythritol lipids (MELs) are glycolipids and have several pharmacological efficacies. MELs also show skin-moisturizing efficacy through a yet-unknown underlying mechanism. Aquaporin-3 (AQP3) is a membrane protein that contributes to the water homeostasis of the epidermis, and decreased AQP3 expression following ultraviolet (UV)-irradiation of the skin is associated with reduced skin moisture. No previous study has examined whether the skin-moisturizing effect of MELs might act through the modulation of AQP3 expression. Here, we report for the first time that MELs ameliorate the UVA-induced downregulation of AQP3 in cultured human epidermal keratinocytes (HaCaT keratinocytes). Our results revealed that UVA irradiation decreases AQP3 expression at the protein and messenger RNA (mRNA) levels, but that MEL treatment significantly ameliorated these effects. Our mitogen-activated protein kinase inhibitor analysis revealed that phosphorylation of c-Jun N-terminal kinase (JNK), but not extracellular signal-regulated kinase or p38, mediates UVA-induced AQP3 downregulation, and that MEL treatment significantly suppressed the UVA-induced phosphorylation of JNK. To explore a possible mechanism, we tested whether MELs could regulate the expression of peroxidase proliferator-activated receptor gamma ($PPAR-{\gamma}$), which acts as a potent transcription factor for AQP3 expression. Interestingly, UVA irradiation significantly inhibited the mRNA expression of $PPAR-{\gamma}$ in HaCaT keratinocytes, whereas a JNK inhibitor and MELs significantly rescued this effect. Taken together, these findings suggest that MELs ameliorate UVA-induced AQP3 downregulation in HaCaT keratinocytes by suppressing JNK activation to block the decrease of $PPAR-{\gamma}$. Collectively, our findings suggest that MELs can be used as a potential ingredient that modulates AQP3 expression to improve skin moisturization following UVA irradiation-induced damage.

Mutation, DNA Strand Cleavage and Nitric Oxide Formation Caused by N-nitrosoproline with UVA & UVB

  • Arimoto-Kobayashi, Sakae;Ando, Yoshiko;Horai, Yumi;Okamoto, Keinosuke;Hayatsu, Hikoya;Green, Michael H.L.
    • Journal of Photoscience
    • /
    • v.9 no.3
    • /
    • pp.49-50
    • /
    • 2002
  • N-Nitrosoproline(NPRO) is endogenously formed from proline and nitrite. NPRO has been reported to be nonmutagenic and noncarcinogenic. In this study, we have detected the direct mutagenicity of NPRO with UVA and UVB towards S. typhimurium. Formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG), a mutagenic lesion, was observed in calf thymus DNA treated with NPRO plus simulated sunlight. Furthermore, the treatment with NPRO and sunlight induced single strand breaks in the superhelical replicative form of phage M13mp2 DNA. An analysis using scavengers suggested that both reactive oxygen species and NO radical mediate the strand breaks. The formation of nitric oxide was observed in NPRO solution irradiated with UVA. The co-mutagenic and co-toxic actions of NPRO and sunlight merit attention as possible mechanisms increasing the carcinogenic risk from UVA irradiation.

  • PDF

Immunohistochemical analysis of effects of UVA exposure to the human fibroblasts in the skin equivalent model

  • Kazuhiro Shimizu;Fumihide Ogawa;Bae, Sang-Jae;Yoichiro Hamasaki;Ichiro Katayama
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.500-502
    • /
    • 2002
  • In vitro and in vivo studies have reported the induction of matrix metaloproteinase (MMP)-1 in the fibroblasts by ultraviolet (UV) A irradiation. We constructed the skin equivalent model using HaCaT cells as keratinocytes and human neonatal dennal fibroblasts as fibroblasts in the present study. The induction of MMP-l in the fibroblasts was confirmed immunohistochemically 6 hours after UVA irradiation using this model. This model was simply composed of human keratinocytes and fibroblasts. To our knowledge, there have been a few papers concerning the skin equivalent model in the field of photobiology. The effect of UVA exposure to fibroblasts through keratinocytes was examined using this model. The cross-talk can be examined between keratinocytes and fibroblasts. This model can be a useful tool in the field of photobiology.

  • PDF

Photoprotective Effects of Minerals from Korean Indigenous Ores on UVA-irradiated Human Dermal Fibroblast

  • Kang, Dong-Kyu;Lee, Mi-Young
    • Molecular & Cellular Toxicology
    • /
    • v.4 no.2
    • /
    • pp.150-156
    • /
    • 2008
  • The photoprotective effects of minerals from Korean indigenous ores, consisting mainly of sericite, on UVA-irradiated human dermal fibroblast (HDF) were examined. Zymographic analysis showed that the treatment of the minerals significantly reduced the UVA-enhanced MMP-1 activity and mRNA level. The minerals also showed strong inhibitory effect on MMP-2 activity and mRNA expression. Moreover, the minerals were better than polyphenol in reducing MMP-1 and MMP-2 expressions. Notably, the minerals significantly enhanced collagen biosynthesis in the HDF. Inhibition of the elastase activity and protection against the oxidatively damaged HDF cell were also found in the presence of the minerals. Taken together, the ore minerals may be used as the potent photo-protective and anti-skin-aging ingredients which can prevent skin cell damage by UVA.

Antiapoptotic Effects Induced by Different Wavelengths of Ultraviolet Light

  • Ibuki, Yuko;Goto, Rensuke
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.485-487
    • /
    • 2002
  • Cells receive signals for survival as well as death, and the balance between the two ultimately determines the fate of the cells. UV-triggered apoptotic signaling has been well documented, whereas UV-induced survival effects have received little attention. We have reported previously that UVB irradiation prevented apoptosis, which was partly dependent on activation of the phosphatidylinositol 3-kinase (PI3-kinase)/ Akt pathway. In this study, anti-apoptotic effects of UV with different wavelength ranges, UVA, UVB and UVC, were examined. NIH3T3 cells showed apoptotic cell death by detachment from the extracellular matrix under serum-free conditions, which was prevented by all wavelengths. However, the effect of UVA was less than those of UVB and UVC. Reduction of mitochondrial transmembrane potential and activation of caspase-9 and -3 were suppressed by all three wavelengths of UV, showing wavelength-dependent effects as mentioned above. The PI3-kinase inhibitor wortmannin partially inhibittrl the UVB and UVC-induced suppression of apoptosis, but not the inhibitoty effect of UVA. The Akt phosphotylation by UVB and UVC was completely inhibittrl by addition of wortmannin, but that by UVA was not P38 MAP kinase inhibitor SB203580 partially inhibited the UVB and UVC-induced suppression of apoptosis and Akt phosphotylation, and completely inhibited UVA-induced those. These results suggested the existence of two different survival pathways leading to suppression of apoptosis, one for UVA that is independent of the PI3-kinase/Akt pathway and dependent on p38 MAP kinase, and the other for UVB and UVC that is dependent on both pathways.

  • PDF

A Novel Heptapeptide that Promotes Cellular Activity and Inhibits Photoaging in Fibroblasts (섬유아세포에서 세포 활성 촉진 및 광노화 억제 효능을 보이는 신규 헵타펩타이드)

  • Lee, Eung Ji;Kang, Hana;Hwang, Bo Byeol;Chung, Yong Ji;Kim, Eun Mi
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.48 no.2
    • /
    • pp.157-167
    • /
    • 2022
  • In this study, we investigated the effects of heptapeptide on cellular activation and inhibition of cellular damage induced by photoaging condition in NIH3T3 fibroblasts. Cell proliferation and extracellular matrix (ECM) expression were induced by heptapeptide. The reduced cell viability under photoaging condition through ultraviolet A (UVA) irradiation was increased by heptapeptide. And UVA-induced apoptosis, matrix metalloproteinases-1 (MMP-1) expression, and reactive oxygen species (ROS) level were decreased by heptapeptide. In addition, the inhibition of transforming growth factor-β (TGF-β)/smad signaling under UVA irradiation which resulting in reduction of ECM expression was also recovered by heptapeptide. We also tested the effect of heptapeptide under another photoaging condition through heat shock, and pre-treatment of heptapeptide prevented the phosphorylation of mitogen-activated protein kinase (MAPK) and MMP-1 expression induced by heat shock. From these results, it has been shown that the heptapeptide has protective effects on fibroblasts through the up-regulation of cellular activity and through the decreasing of intracellular ROS level induced by UVA irradiation or heat shock. It is expected that the dermal protection effect of heptapeptide can be applied as a new cosmetic material in the future.

Phototoxicity Evaluation of Pharmaceutical Substances with a Reactive Oxygen Species Assay Using Ultraviolet A

  • Lee, Yong Sun;Yi, Jung-Sun;Lim, Hye Rim;Kim, Tae Sung;Ahn, Il Young;Ko, Kyungyuk;Kim, JooHwan;Park, Hye-Kyung;Sohn, Soo Jung;Lee, Jong Kwon
    • Toxicological Research
    • /
    • v.33 no.1
    • /
    • pp.43-48
    • /
    • 2017
  • With ultraviolet and visible light exposure, some pharmaceutical substances applied systemically or topically may cause phototoxic skin irritation. The major factor in phototoxicity is the generation of reactive oxygen species (ROS) such as singlet oxygen and superoxide anion that cause oxidative damage to DNA, lipids and proteins. Thus, measuring the generation of ROS can predict the phototoxic potential of a given substance indirectly. For this reason, a standard ROS assay (ROS assay) was developed and validated and provides an alternative method for phototoxicity evaluation. However, negative substances are over-predicted by the assay. Except for ultraviolet A (UVA), other UV ranges are not a major factor in causing phototoxicity and may lead to incorrect labeling of some non-phototoxic substances as being phototoxic in the ROS assay when using a solar simulator. A UVA stimulator is also widely used to evaluate phototoxicity in various test substances. Consequently, we identified the applicability of a UVA simulator to the ROS assay for photoreactivity. In this study, we tested 60 pharmaceutical substances including 50 phototoxins and 10 non-phototoxins to predict their phototoxic potential via the ROS assay with a UVA simulator. Following the ROS protocol, all test substances were dissolved in dimethyl sulfoxide or sodium phosphate buffer. The final concentration of the test solutions in the reaction mixture was 20 to $200{\mu}M$. The exposure was with $2.0{\sim}2.2mW/cm^2$ irradiance and optimization for a relevant dose of UVA was performed. The generation of ROS was compared before and after UVA exposure and was measured by a microplate spectrophotometer. Sensitivity and specificity values were 85.7% and 100.0% respectively, and the accuracy was 88.1%. From this analysis, the ROS assay with a UVA simulator is suitable for testing the photoreactivity and estimating the phototoxic potential of various test pharmaceutical substances.

Characteristics and Cellular Protective Effects against UVA of Cationic Liposome Loaded with Quercetin and Rutin (쿼세틴과 루틴을 담지한 양이온 리포좀의 특성조사 및 UVA에 대한 세포 보호 효과)

  • Gu, Hyun A;Kim, Moon Jin;Kim, Hae Soo;Ha, Ji Hoon;Yu, Eun Ryung;Park, Soo Nam
    • Applied Chemistry for Engineering
    • /
    • v.26 no.2
    • /
    • pp.165-172
    • /
    • 2015
  • Quercetin and its glycoside, rutin, are flavonoids, which are well known as natural antioxidants. In this study, cationic liposomes loaded with flavonoids (quercetin or rutin) were investigated for their effects on cell and skin permeability, and protective effects against UVA. The particle size of the empty cationic liposomes was in the range of 100~130 nm, and the zeta potential was + 33.05 mV. The entrapment efficiency of 0.5R/CL was higher than that of 0.5 Q/CL. The cellular uptake of the cationic liposomes was five-fold higher than that of liposomes. The skin permeability of quercetin and rutin was investigated using Franz diffusion cells. Compared to the initial loading dose, the amount of quercetin or rutin delivered to the skin by cationic liposomes was higher than that delivered by conventional liposomes or phosphate-buffered saline. From the protective effect of cationic liposomes against UVA ($25J/cm^2$), we found that the cell viability in cationic liposomes containing flavonoids was higher than that of using UVA irradiation only. These results indicate that cationic liposomes provide enhanced delivery of flavonoids (quercetin and rutin) into the skin and may be used for antiaging and antioxidant cosmetics.

Study of Degradation of Bisphenol A with $TiO_2$ Powder in CPC System (CPC (Compound Parabolic Collector) 내 이산화티탄을 이용한 비스페놀 A (Bisphenol A)의 분해에 관한 연구)

  • Hwang, An-Na;Park, Myung-Hee;Lim, Beom-Guk;Khim, Jee-Hyeong
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.11 no.1
    • /
    • pp.107-112
    • /
    • 2011
  • In this study, photocatalytic degradation and mineralization of bisphenol A (BPA), which has been listed as one of endocrine disruptors, were carried out in the CPC system using $Tio_2$ slurry and UVA irradiation. The degradation efficiency has been investigated under the controlled parameters including initial concentration (5, 10, 20 mg/L), dosage of $Tio_2$ (0.1, 0.5, 1.0 g/L), UVA power (0, 80, 120 W) and temperature (0, 20, 30). At 10mg/L of initial concentration, BPA was degraded above 80% after 10min, BPA were degraded 97% and 49% at 20 mg/L and 30 mg/L, respectively. At $Tio_2$ dosage was 0.1 and 0.5 g/L, the degradations of BPA showed similar trend and were about 70% after 1 hr, and the degradation of BPA was above 80% after 30 min at 1 g/L of $Tio_2$ dosage. The increase of degradation seem to be due to the increase in the total surface area, namely number of active sites, available for the photocatalytic reaction as the dosage of photocatalyst increased. When the UVA power was 120 W, BPA was degraded rapidly above 60% after 10min of reaction time. To investigate the effect of temperature, carried out experiment controlled temperature, there were no significant differences depending on the temperature. After 1hr, the degradation of BPA were 46%, 67%, and 69% at 10, 20 and $30^{\circ}C$.