• Title/Summary/Keyword: UV-replication

Search Result 53, Processing Time 0.034 seconds

Fabrication of Non Viral Vector for Drug and Gene Delivery using Particle Replication In Non-Wetting Templates (PRINT) Technique (Particle Replication In Non-Wetting Templates (PRINT) 방법을 이용한 약물 및 유전자 전달체의 제작)

  • Park, Ji-Young;Gratton, Stephanie;Benjamin, Maynor;Lim, Jomg Sung;Desimone, Joseph
    • Korean Chemical Engineering Research
    • /
    • v.45 no.5
    • /
    • pp.493-499
    • /
    • 2007
  • Polymeric hydrogel particles were fabricated to demonstrate the scale-up possibilities with the Particle Replication In Non-wetting Templates (PRINT) process. A permanently etched, specifically designed master was made on a silicon wafer using conventional photolithography, then reactive ion etching. The master and substrate were used repeatedly to make a large number of identical elastomeric perfluoropolyethers (PFPE) replica molds. The PFPE replica molds were used to fabricate and harvest individual, monodisperse micron-sized particles using the PRINT process. A water-soluble polymer adhesive was used as a sacrificial layer for harvesting particles. Particles were composed of biodegradable poly (ethylene glycol) diacrylate (PEG-diA), and aminoethylacrylate (AEM) and 2-acryloxyethyltrimethyl ammonium chloride (AETMAC) were added to them for improving the uptake of the cells. This study suggested PRINT used to produce the uniformed and shape specific biodegradable polymer is the effective technique for the non viral vector for the drug and the gene delivery.

Precise Replica Technology Study for Fine Optical Waveguide Device (미세 광소자용 도파로 정밀 복제기술 연구)

  • Oh S.H.;Kim C.S.;Jeong M.Y.;Boo J.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1493-1496
    • /
    • 2005
  • In this paper, we describe a simple, precise and low cost method of fabricating PDMS stamp for UV embossing. It is important to improve the replication quality of stamp because the accuracy of fabricated structure is related to that of the stamp in UV embossing. The PDMS stamp has been fabricated by the replica molding technology with ultrasonic vibration to eliminate micro-air bubbles during the fabrication process of PDMS stamp. Also, this fabrication to use ultrasonic vibration promotes PDMS solution to fill into micro channel and edge parts. We report the fabrication of an optical core using UV embossing with fabricated PDMS stamp. This fabricated core is $7\;\mu{m}\;at\;depth,\;6\;\mu{m}\;at\;width.\;This\;measured\;value\;has\;the\;difference\;below\;1\;\mu{m}$compared to the original stamp. The surface roughness of core is about 14 nm root mean square. This is satisfactory value to use low-loss optical waveguide. Our successful demonstration of precise replica technology presents an alternative approach for the stamp of UV embossing.

  • PDF

Fabrication of Metallic Nano-Filter Using UV-Imprinting Process (UV 임프린팅 공정을 이용한 금속막 필터제작)

  • Noh Cheol Yong;Lee Namseok;Lim Jiseok;Kim Seok-min;Kang Shinill
    • Transactions of Materials Processing
    • /
    • v.14 no.5 s.77
    • /
    • pp.473-476
    • /
    • 2005
  • The demand of on-chip total analyzing system with MEMS (micro electro mechanical system) bio/chemical sensor is rapidly increasing. In on-chip total analyzing system, to detect the bio/chemical products with submicron feature size, a filtration system with nano-filter is required. One of the conventional methods to fabricate nano-filter is to use direct patterning or RIE (reactive ion etching). However, those procedures are very costly and are not suitable fur mass production. In this study, we suggested new fabrication method for a nano-filter based on replication process, which is simple and low cost process. After the Si master was fabricated by laser interference lithography and reactive ion etching process, the polymeric mold was replicated by UV-imprint process. Metallic nano-filter was fabricated after removing the polymeric part of metal deposited polymeric mold. Finally, our fabrication method was applied to metallic nano-filter with $1{\mu}m$ pitch size and $0.4{\mu}m$ hole size for bacteria sensor application.

Analysis and quantification of DNA photoadducts by HPLC/ion trap mass spectrometry

  • Zhang, Guangyu;Linscheid, Michael
    • Proceedings of the SCSK Conference
    • /
    • 2003.09b
    • /
    • pp.405-406
    • /
    • 2003
  • DNA is known as the genetic material in cells. Various environmental factors can cause DNA damages. One of them is sunlight. The life on earth depends on the sunlight, but on the other hand, the UV light in sunlight can cause skin DNA damages. When these damages are not fully repaired before replication, they can lead to mutations of oncogenes and tumour suppressor gene and result in photo carcinogenesis, in the end, skin cancer.(omitted)

  • PDF

Recognition of DNA Damage in Mammals

  • Lee, Suk-Hee
    • BMB Reports
    • /
    • v.34 no.6
    • /
    • pp.489-495
    • /
    • 2001
  • DNA damage by UV and environmental agents are the major cause of genomic instability that needs to be repaired, otherwise it give rise to cancer. Accordingly, mammalian cells operate several DNA repair pathways that are not only responsible for identifying various types of DNA damage but also involved in removing DNA damage. In mammals, nucleotide excision repair (NER) machinery is responsible for most, if not all, of the bulky adducts caused by UV and chemical agents. Although most of the proteins involved in NER pathway have been identified, only recently have we begun to gain some insight into the mechanism by which proteins recognize damaged DNA. Binding of Xeroderma pigmentosum group C protein (XPC)-hHR23B complex to damaged DNA is the initial damage recognition step in NER, which leads to the recruitment of XPA and RPA to form a damage recognition complex. Formation of damage recognition complex not only stabilizes low affinity binding of XPA to the damaged DNA, but also induces structural distortion, both of which are likely necessary for the recruitment of TFIIH and two structure-specific endonucleases for dual incision.

  • PDF

Fabrication of Plasmon Subwavelength Nanostructures for Nanoimprinting

  • Cho, Eun-Byurl;Yeo, Jong-Souk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.247-247
    • /
    • 2012
  • Plasmon subwavelength nanostructures enable the structurally modulated color due to the resonance conditions for the specific wavelength range of light with the nanoscale hole arrays on a metal layer. While the unique properties offered from a single layer of metal may open up the potential applications of integrated devices to displays and sensors, fabrication requirements in nanoscale, typically on the order of or smaller than the wavelength of light in a corresponding medium can limit the cost-effective implementation of the plasmonic nanostructures. Simpler nanoscale replication technologies based on the soft lithography or roll-to-roll nanoimprinting can introduce economically feasible manufacturing process for these devices. Such replication requires an optimal design of a master template to produce a stamp that can be applied for a roll-to-roll nanoimprinting. In this paper, a master mold with subwavelength nanostructures is fabricated and optimized using focused ion beam for the applications to nanoimprinting process. Au thin film layer is deposited by sputtering on a glass that serves as a dielectric substrate. Focused ion beam milling (FIB, JEOL JIB-4601F) is used to fabricate surface plasmon subwavelength nanostructures made of periodic hole arrays. The light spectrum of the fabricated nanostructures is characterized by using UV-Vis-NIR spectrophotometer (Agilent, Cary 5000) and the surface morphology is measured by using atomic force microscope (AFM, Park System XE-100) and scanning electron microscope (SEM, JEOL JSM-7100F). Relationship between the parameters of the hole arrays and the corresponding spectral characteristics and their potential applications are also discussed.

  • PDF

Characterization of a New Gene Resistant to Alkylating Agents and 3-Aminobenzamide When Knocked Out in Fission Yeast (분열형 효모에서 유전자 결실에 의해 알킬화제와 3-AMINOBENZAMIDE에 저항성을 나타내는 새로운 유전자의 특성 분석)

  • 박종군;차재영;황성진;박세근;김미영;백성민;최인순;이정섭
    • Journal of Life Science
    • /
    • v.12 no.2
    • /
    • pp.219-225
    • /
    • 2002
  • The organization of eukayotic chromatin into specific conformation that are associated with transcription, replication, reapir and other nuclear processes are achieved via a series of DNA-protein interaction. These interactions are mediated by a range of DNA-binding domains such as SAP domain et at. By searching S. pombe genomic DNA database, we have found a gene named SAPuvs (SAP UV Sensitive) whose amino acid sequence is in part similar to SAP domain of Arabidopsis poly (ADP-ribose) polymerase and Ku7O. Knock-out cell of S. pombe SAPuvs gene was constructed using Ura4 as a selection marker. Survival analysis of knock-out cell indicated that treatment with UV significantly reduces the survival compared to wild type cell. Potentiation of MMS-induced cytotoxicity by 3AB post-treatment was observed in wild type cells, but not in knock-out cells. These data suggested that the protein encoded by SAPuvs gene is associated with chromatin reorganization during DNA repair.

Identification of the Capsid Protein-binding Region of the SL1(+) RNA Located at the 5' Region of the Potato virus X Genome

  • Cho, Sang-Yun;Kim, Kook-Hyung
    • The Plant Pathology Journal
    • /
    • v.28 no.1
    • /
    • pp.75-80
    • /
    • 2012
  • $Potato$ $virus$ $X$ (PVX) contains $cis$-acting elements including stem-loop 1 (SL1) RNA at the 5' region; SL1 is conserved among all potexviruses. The SL1 at the positive-sense RNA, SL1(+), is required for PVX RNA replication, cell-to-cell movement, and translation. Previous research demonstrated that SL1(+) RNA also serves as the origin of assembly for encapsidation of PVX RNA. To identify the essential sequences and/or regions for capsid protein (CP) subunit recognition within SL1(+) RNA, we used electrophoretic mobility shift assays (EMSA), UV cross-linking, and yeast three-hybrid analyses. The EMSA and UV cross-linking analyses with PVX CP subunits and RNA transcripts corresponding to the SL1(+) RNA showed that the SL1(+) RNA formed complexes with CP subunits. We also conducted EMSA and yeast three-hybrid analyses with RNAs containing various mutations of SL1(+) RNA elements. These analyses indicated that SL1(+) RNA is required for the interaction with PVX CP and that the RNA sequences located at the loop C and tetra loop of the SL1(+) are crucial for CP binding. These results indicate that, in addition to being important for RNA accumulation, the SL1(+) RNA from the 5' region of the PVX genome is also required for specific binding of PVX CP.

Protective Immune Reponses Induced by Non-infectious L-particles of Equine Herpesvirus Type-1: Implication of Cellular Immunity

  • Mohd Lila Mohd Azmi;Field, Hugh-John;Frazer Rixon;Lauchlan, John-Mc
    • Journal of Microbiology
    • /
    • v.40 no.1
    • /
    • pp.11-19
    • /
    • 2002
  • Mice immunized with equine herpesvirus type-1(EHV-1) L-particles skewed a significant increase (p<7.75) in serum antibody titers. Upon a booster dose four weeks lateral antibody titers increased significantly. Interestingly, immunization via intravenous or intramuscular route induced significantly higher (p<0.75) antibody titers. However, mice iummunized with UV-treated L-particles, visions or immunization via intranasal route induced lower antibody titers. Upon challenge inoculation with wildtype EHV-1, our data showed there was a poor correlation between antibody titers and protection against virus replication. Therefore, the role of cell-mediated immunity Inwards protection was investigated. As predicted, the strongest cell-mediated immunity, as measured by delayed-hypersensitivity test, was detected in mice immunized with live virus particles. The magnitude of cell-mediated immune response correlated with the efficacy of L-particles as immunizing agent. The highest efficacy, as indicated in mice immunized via intranasal routed was highly correlated with cell-mediated immunity. A similar phenomenon was also demonstrated in mice immunized intranasally with UV-treated L-particles. However, the degree of protection was reduced when mice immunized intravenously or intramuscularly with UV-treated L-particles. In conclusion, protection conferred in these animals was highly implicated by immune cells and the least by antibodies. The route of immunization and the nature of the antigen also contributed to the efficacy of L-particles as immunizing agent. In contrast to that of herpes simplex virus type 1, our data showed EHV-1 non-infectious L-particles are highly suitable for immunization of the host against EHV-1 disease.