• Title/Summary/Keyword: UV-replication

Search Result 53, Processing Time 0.021 seconds

Fabrication of Metallic Nano-filter Using UV-Imprinting Process (UV 임프린팅 공정을 이용한 금속막 필터제작)

  • Noh Cheol Yong;Lee Namseok;Lim Jiseok;Kim Seok-min;Kang Shinill
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.237-240
    • /
    • 2005
  • The demand of micro electrical mechanical system (MEMS) bio/chemical sensor is rapidly increasing. To prevent the contamination of sensing area, a filtration system is required in on-chip total analyzing MEMS bio/chemical sensor. A nano-filter was mainly applied in some application detecting submicron feature size bio/chemical products such as bacteria, fungi and so on. We suggested a simple nano-filter fabrication process based on replication process. The mother pattern was fabricated by holographic lithography and reactive ion etching process, and the replication process was carried out using polymer mold and UV-imprinting process. Finally the nano-filter is obtained after removing the replicated part of metal deposited replica. In this study, as a practical example of the suggested process, a nano-dot array was replicated to fabricate nano-filter fur bacteria sensor application.

  • PDF

Effects of Ultraviolet Light on DNA Replication and Repair in Cultured Myoblast Cells of Chick Embryo (培養한 鷄胚筋細胞의 DNA複製 및 回復에 미치는 紫外線의 影響)

  • Park, Sang-Dai;Lee, Suck-Hwe;Choe, Soo-Young;Ha, Doo-Bong
    • The Korean Journal of Zoology
    • /
    • v.25 no.2
    • /
    • pp.55-62
    • /
    • 1982
  • DNA synthesis, unscheduled DNA synthesis, excision of pyrimidine dimers and phtoreactivation were determined in UV-irradiated differentiating muscle cells at various times of primary culture of 12 day chick embryos and results obtained were as follows. The rates of UV-induced unscheduled DNA synthesis were increased as increase of UV dose. And the rates were gradually decreased as the increase of time after culture, but at higher doses the decreasing tendency was remarkable. The patterns of DNA replication were changed drastically as a function of time so that in the seven day cultures the rate of $^3$H-thymidine incorporation was found to be 0.2% of the original activity. The pattern of inhibition of DNA replication by UV damage demonstrated that in cells of earlier stages there were no remarkable changes, but in cells of later stages there was significant fluctuation. Photoreactivation and the excision of pyrimidine dimer in the one day cultures showed that photoreactivation occurred immediately after UV-irradiation, but excision of pyrimidine dimer was gradually and slowly occurred. These results indicate that the differentiation of embryonic muscle cells accompanies the gradual reduction of DNA replication and unscheduled DNA synthesis, and that the photoreactivation is rapid process compared to excision repair.

  • PDF

Manufacture of High-Aspect-Ratio Polymer Nano-Hair Arrays by UV Nano Embossing Process (UV 나노 엠보싱 공정을 이용한 고종횡비 고분자 나노 섬모 어레이 제작)

  • Kim Dong-Sung;Lee Hyun-Sup;Lee Jung-Hyun;Lee Kun-Hong;Kwon Tai-Hun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.7 s.250
    • /
    • pp.773-778
    • /
    • 2006
  • High-aspect-ratio nano-hair or nano-pillar arrays have great potential in a variety of applications. In this study, we present a simple and cost-effective replication method of high-aspect-ratio polymer nano-hair arrays. Highly ordered nano-porous AAO (anodic aluminum oxide) template was utilized as a reusable nano-mold insert. The AAO nano-mold insert fabricated by the two-step anodization process in this study had close- packed straight nano-pores, which enabled us to replicate densely arranged nano-hairs. The diameter, depth and pore spacing of the nano-pores in the fabricated AAO nano-mold insert were about 200nm, $1{\mu}m$ and 450nm, respectively. For the replication of polymer nano-hair arrays, a UV nano embossing process was applied as a mass production method. The UV nano embossing machine was developed by our group for the purpose of replicating nano-structures by means of non-transparent nano-mold inserts. Densely arranged high-aspect-ratio nano-hair arrays have been successfully manufactured by means of the UV nano embossing process with the AAO nano-mold insert under the optimum processing condition.

Fabrication of diffractive optical element for objective lens of small form factor data storage device (초소형 광정보저장기기용 웨이퍼 스케일 대물렌즈 제작을 위한 회절광학소자 성형기술 개발)

  • Bae H.;Lim J.;Jeong K.;Han J.;Yoo J.;Park N.;Kang S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.09a
    • /
    • pp.35-40
    • /
    • 2005
  • The demand for small and high-capacity optical data storage devices has rapidly increased. The areal density of optical disk is increased using higher numerical aperture objective lens and shorter wavelength source. A wafer-scale stacked micro objective lens with a numerical aperture of 0.85 and a focal length of 0.467mm for the 405nm blue- violet laser was designed and fabricated. A diffractive optical element (DOE) was used to compensate the spherical aberration of the objective lens. Among the various fabrication methods for micro DOE, the UV-replication process is more suitable for mass-production. In this study, an 8-stepped DOE pattern as a master was fabricated by photolithography and reactive ion etching process. A flexible mold was fabricated for improving the releasing properties and shape accuracy in UV-molding process. In the replication process, the effects of exposing time and applied pressure on the replication quality were analyzed. Finally, the shapes of master, mold and molded pattern were measured by optical scanning profiler. The deviation between the master and the molded DOE was less than 0.1um. The efficiency of the molded DOE was measured by DOE efficiency measurement system which consists of laser source, sample holder, aperture and optical power meter, and the measured value was $84.5\%$.

  • PDF

Fabrication of Diffractive Optical Element for Objective Lens of Small form Factor Data Storage Device (초소형 광정보저장기기용 웨이퍼 스케일 대물렌즈 제작을 위한 회절광학소자 성형기술 개발)

  • Bae H.;Lim J.;Jeong K.;Han J.;Yoo J.;Park N.;Kang S.
    • Transactions of Materials Processing
    • /
    • v.15 no.1 s.82
    • /
    • pp.3-8
    • /
    • 2006
  • The demand fer small and high-capacity optical data storage devices has rapidly increased. The areal density of optical disk is increased by using higher numerical aperture objective lens and shorter wavelength source. A wafer-scale stacked micro objective lens with a numerical aperture of 0.85 and a focal length of 0.467mm for the 405nm blue- violet laser was designed and fabricated. A diffractive optical element (DOE) was used to compensate the spherical aberration of the objective lens. Among the various fabrication methods for micro DOE, the UV-replication process is more suitable fur mass-production. In this study, an 8-stepped DOE pattern as a master was fabricated by photolithography and reactive ion etching process. A flexible mold was fabricated for improving the releasing properties and shape accuracy in UV-replication process. In the replication process, the effects of exposing time and applied pressure on the replication quality were analyzed. Finally, the surface profiles of master, mold and molded pattern were measured by optical scanning profiler. The geometrical deviation between the master and the molded DOE was less than $0.1{\mu}m$. The diffraction efficiency of the molded DOE was measured by DOE efficiency measurement system which consists of laser source, sample holder, aperture and optical power meter, and the measured value was $84.5\%$.

Fabrication of the Imaging Lens for Mobile Camera using Embossing Method (엠보싱 공법에 의한 카메라 모듈용 광학렌즈 성형기법에 대한 연구)

  • Lee, C.H.;Jin, Y.S.;Noh, J.E.;Kim, S.H.;Jang, I.C.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.79-83
    • /
    • 2007
  • We have developed a compact and cost-effective camera module on the basis of wafer-scale replication technology. A multiple-layered structure of several aspheric lenses in a mobile camera module is first assembled by bonding multiple glass-wafers on which 2-dimensional replica arrays of identical aspheric lenses are UV-embossed, followed by dicing the stacked wafers and packaging them with image sensor chips. We have demonstrated a VGA camera module fabricated by the wafer-scale replication processing with various UV-curable polymers having refractive indices between 1.4 and 1.6, and with three different glass-wafers of which both surfaces are embossed as aspheric lenses having 200 um sag-height and aspheric-coefficients of lens polynomials up to tenth-order. We have found that precise compensation in material shrinkage of the polymer materials is one of the most technical challenges, in order to achieve a higher resolution in wafer-scaled lenses for mobile camera modules.

  • PDF

The Development of aspheric elements using replication process (비구면 광학소자의 복제기술 개발)

  • 민지홍;김영일;이문규;조성민;최환영
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2000.08a
    • /
    • pp.42-43
    • /
    • 2000
  • Aspheric optical elements can provide an advantage in the design of optical system that require high performance and small size. The main disadvantage of high volume production of aspheric optical elements is very high cost. In this paper, we suggest new technology of high volume production process using replication process. The replication is a thin film of UV cured resin on a solid substrate blank(polymer substrate) with aspheric surface.

  • PDF

Fabrication of Lenticular Lens by Continuous UV Roll Imprinting (UV Roll 임프린팅 공정을 이용한 렌티큘러 렌즈 제작)

  • Myung H.;Cha J.;Kim S.;Kang S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.91-94
    • /
    • 2005
  • With increasing demands for large-scale micro-optical components in the field of digital display, the establishment of large-scale fabrication technology fur polymeric patterns has become a priority. The starting point of any polymer replication process is the mold, and the mold often has flat surface. However, It is very hard to replicate large-scale micro patterns using the flat mold, because the cost of large-scale flat mold was very high, and some uniformity and releasing problems were often occurred in large scale flat molding process. In this study, a UV roll imprinting system to overcome the financial and fabrication issues of large-scale pattern replication process was designed and constructed. As a practical example of the system, a lenticular lens with radius of curvature of $223{\mu}m$ and pitch of $280{\mu}m$, which was used to provide wide viewing angle in projection TV, was designed and fabricated. The roll stamper was fabricated using direct machining process of aluminum roll base. Finally, the shape accuracy and uniformity of roll imprinted lenticular lens sheet were measured and analyzed.

  • PDF

Fabrication of Two-dimensional Photonic Crystal by Roll-to-Roll Nanoreplication (롤투롤 나노 복제 공정을 이용한 이차원 광결정 소자의 제작)

  • Kim, Young-Kyu;Byeon, Euihyeon;Jang, Ho-Young;Kim, Seok-Min
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.5
    • /
    • pp.16-22
    • /
    • 2013
  • A two-dimensional photonic crystal structure was investigated using a roll-to-roll nanoreplication and physical vapor deposition processes for the inexpensive enhanced fluorescence substrate which is not sensitive to the polarization directions of excitation light source. An 8 inch silicon master having nano dot array with a diameter of 200 nm, a height of 100 nm and a pitch of 400 nm was prepared by KrF laser scanning lithography and reactive ion etching processes. A flexible polymer mold was fabricated by flat type UV replication process and a deposition of 10 nm nickel layer as an anti-adhesion layer. A roll mold was prepared by warping the flexible polymer mold on an aluminum roll base and a roll-to-roll UV replication process was carried out using the roll mold. After the deposition of ~ 100 nm $TiO_2$ layer on the replicated nano dot array, a 2 dimensional photonic crystal structure was realized with a resonance wavelength of 635 nm for both p- and s-polarized light sources.

Study on Properties of Self-Assembled Monolayer as Anti-adhesion Layer on Metallic Nano Stamper (금속 나노 스탬퍼 점착방지막으로서의 자기조립 단분자막 특성 연구)

  • 최성우;강신일
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10a
    • /
    • pp.367-370
    • /
    • 2003
  • In this study, application of SAM (self-assembled monolayer) to nano replication process as an anti-adhesion layer was presented to reduce the surface energy between the nano mold and the replicated polymeric nano patterns. The electron beam lithography was used for master nano patterns and the electorforming process was used to fabricate the nickel nano stamper. Alkanethiol SAM as an anti-adhesion layer was deposited on metallic nano stamper using solution deposition method. To analyze wettability and adhesion force of SAM, contact angle and LFM (Lateral Force Microscopy) were measured at the actual processing temperature and pressure for the case of nano compression molding and at the actual UV dose for the case of nano UV molding. It was found that the surface energy due to SAM deposition on the nickel nano stamper markedly decreased and the quality of SAM on the nickel stamper maintained under the actual molding environments.

  • PDF