• Title/Summary/Keyword: UV-absorption

Search Result 1,096, Processing Time 0.023 seconds

Electroluminescence device of the new organic materials using Langmuir-Blodgett(LB) method (LB 법을 이용한 새로운 유기물의 전기 발광 소자에 관한 연구)

  • 이호식;이원재;박종욱;김태완;강도열
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.601-604
    • /
    • 1999
  • Electroluminescence(EL) devices based on organic thin films have attracted lots of interests in large-area light-emitting display. Recently, many EL researcher have interested a new emissive organic material. In this study, light-emitting organic electroluminescent devices were fabricated using Langmuir-Blodgett(LB) technique with new emissive organic material. This new emissive organic material were synthesis by our teams and we called PECCP [poly(3,6-N-2ethylhexyl carbazoly cyanoterephthalidene)] which has strong electron donor group and electron acceptor group in main chain repeat unit. This material has good solubility in common organic solvent such as chloroform. THF, etc. and has a good stability in air. In here, the new emissive material is applied to Langmuir-Blodgett(LB) method because our new material has a good stability in air. Optimum conditions of film deposition were examined by a surface pressure-area( $\pi$ -A) isotherms with various factors. The LB film were deposited on a indium Tin Oxide(ITO) glass. We were investigated by measuring current-voltage(I-V) characteristics. Also we were measured the UV/visible absorption at about 410nm and PL spectrum at about 530nm. We are attempt to the electroluminescence device properties of the new emissive material by Langmuir-Blodgett(LB) technique.

  • PDF

A study on the molecular orientation effect of septithiophene (Septithiophene의 배향 특성에 관한 연구)

  • Park, J.H.;Moon, J.H.;Lee, Y.S.;Choi, J.S.;Shin, D.M.;Cho, W.R.;Lee, S.D.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07c
    • /
    • pp.1724-1726
    • /
    • 2000
  • We have investigated a molecular orientation effect of septithiophene(7T), the conjugated linear septenary of thiophene, on its optical and electrical properties. Vacuum evaporation of septithiophene on a substrate induces a upright orientation. We rubbed the pre-layer to lie down molecules. As a result, we could get a horizontal molecular orientation. Dichroic ratio is about 2 at 418nm from UV/visible absorption spectrum. To investigate the electrical characteristics, we fabricated devices with septithiophene as a semiconducting material. The conductivity with horizontal septithiophene orientation is about one order gloater than that of upright septithiophene.

  • PDF

Characterization of Pigment-Producing Kocuria sp. K70 and the Optimal Conditions for Pigment Production and Physical Stability (색소생성 균주 Kocuria sp. K70의 특징과 색소생성 최적 조건 및 물리적 안정성)

  • Kim, Young-Sook;Park, Jin-Sook
    • KSBB Journal
    • /
    • v.25 no.6
    • /
    • pp.513-519
    • /
    • 2010
  • Marine bacterium producing pigment was isolated from the solar saltern of Mijo-myeon, Namhae, Korea. Based on phenotypic characteristics and 16S rRNA sequence analysis, the strain was identified as Kocuria sp., which produced a yellow pigment. The pigment showed UV absorption maximum at 469nm. The bacterial strain grew well on Marine broth 2216 culture medium. Productivity of the pigment reached the maximum value after 44 hours at $30^{\circ}C$, 2% NaCl and pH 6.0. The pigment was produced best when supplied by 1% lactose as a carbon source and 1% beef extract as a nitrogen source. The result of the color stability study showed that pigment extracted from the strain by ethanol was stable at $-20-25^{\circ}C$ and also showed higher stability over 70% for 14 days in light conditions at $25^{\circ}C$. The pigment extract was also stable for all metal ions tested, except for $FeCl_2$.

Correlation Between Crystal Structure and Properties in Polymer Solar Cells (고분자 태양전지의 결정구조와 특성의 상관성)

  • Kim, Jung Yong
    • Korean Chemical Engineering Research
    • /
    • v.46 no.1
    • /
    • pp.88-93
    • /
    • 2008
  • The bulk-heterojunction polymer solar cell based on regioregular P3HT (poly(3-hexylthiophene)) and PCBM (methanofullerene [6,6]-phenyl $C_{61}$-butyric acid methyl ester) was fabricated. Annealing effects on the crystal structure of polymer-fullerene blends as well as the UV-VIS electronic absorption spectroscopy were investigated. The correlation between the crystal organization of bulk-heterojunction film and the power conversion efficiency of solar cell was studied. Resultantly, the polymer solar cell annealed on $150^{\circ}C$ for 30 min, showed both the enhanced molecular interactions and the optimized crystal structure and displayed the power conversion efficiency of 3.2 %.

The Synergistic Effect of Nitrogen and Ni2O3 over TiO2 Photocatalyst in the Degradation of 2,4,6-Trichlorophenol Under Visible Light

  • Hu, Shaozheng;Li, Fayun;Fan, Zhiping
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.12
    • /
    • pp.4052-4058
    • /
    • 2012
  • The composite photocatalyst, N-$TiO_2$ loaded with $Ni_2O_3$, was prepared by $N_2$ plasma treatment. X-ray diffraction, X-ray fluorescence, $N_2$ adsorption, UV-vis spectroscopy, photoluminescence, and X-ray photoelectron spectroscopy were used to characterize the prepared $TiO_2$ samples. The results indicated that the band gap energy was decreased obviously by nitrogen doping, whereas loading of $Ni_2O_3$ did not influence the band gap and visible light absorption. The photocatalytic activities were tested in the degradation of 2,4,6-trichlorophenol (TCP) under visible light. The photocatalytic activity and stability of composite photocatalyst were much higher than that of catalyst modified with nitrogen or $Ni_2O_3$ alone. The synergistic effect of doping nitrogen and $Ni_2O_3$ over $TiO_2$ was investigated.

Electroluminescent Properties of Spiro[fluorene-benzofluorene]-Containing Blue Light Emitting Materials

  • Jeon, Soon-Ok;Lee, Hyun-Seok;Jeon, Young-Min;Kim, Joon-Woo;Lee, Chil-Won;Gong, Myoung-Seon
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.4
    • /
    • pp.863-868
    • /
    • 2009
  • New spiro[fluorene-7,9′-benzofluorene]-based blue host material, 5-phenyl-spiro[fluorene-7,9′-benzofluorene] (BH-1P), was successfully prepared by reacting 5-bromo-spiro[fluorene-7,9′-benzofluorene] (1) with phenyl boronic acid through the Suzuki reaction. 5-(N,N-Diphenyl)amino-spiro[fluorene-7,9′-benzofluorene] (BH-1DPA) and diphenyl-[4-(2-[1,1;4,1]terphenyl-4-yl-vinyl)-phenyl]amine (BD-1) were used as dopant materials. 2,5-Bis-(2',2"- bipyridin-6-yl)-1,1-diphenyl-3,4-diphenylsilacyclopentadiene (ET4) and Alq3 were used as electron transfer materials. Their UV absorption, photoluminescence and thermal properties were examined. The blue OLEDs with the configuration of ITO/DNTPD/$\alpha$-NPD/BH-1P:5% dopant/$Alq_3$ or ET4/LiF-Al prepared from the BH-1P host and BH-1DPA and BD-1 dopants showed a blue EL spectrum at 452 nm at 10 V and a luminance of 923.9 cd/$m^2$ with an efficiency of 1.27 lm/W at a current density of 72.57 mA/$cm^2$.

Synthesis of Bi2WO6 Nanometer Sheet Shaped and Approach to the Photocatalysis

  • Kim, Dong-Young;Kim, Su-Jung;Kang, Mi-Sook
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.3
    • /
    • pp.630-635
    • /
    • 2009
  • For use as a photocatalyst, bismuth tungsten oxide, $Bi_2WO_6$, was successfully synthesized by hydrothermal treatment at pH = 11 and heating at 200 ${^{\circ}C}$ for 24h, and samples were subsequently thermal treated at 400, 600, and 800 ${^{\circ}C}$ to increase crystallinity. TEM results revealed that the initial untreated particles were sheet‐shaped, grain size was below 80 nm, and it increased with treated temperatures. These $Bi_2WO_6$ samples absorbed at around 400 nm in the visible light range and the intensity of absorption was particularly strongest in samples thermal treated at 600 ${^{\circ}C}$. Their photoluminescence abilities, related to the recombination between the excited electrons and holes, were overall small for other general photocatalysts such as TiO2, and the smallest in the case of thermal treatment at 600 ${^{\circ}C}$, as reversible result of UV‐visible absorbance. Methyl orange of 5.0 ppm aqueous solution was almost completely removed after 2 h when treated over the $Bi_2WO_6$ thermal treated at 600 ${^{\circ}C}$.

High Photocatalytic Activity of Gd2O2S:Tb Modified Titanium Dioxide Films

  • Kim, Bum-Goo;Lee, Hak-Guen;Kim, Hee-Sung;Kim, Young-Soon
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.3
    • /
    • pp.675-678
    • /
    • 2009
  • $Fe_2O_3,\;Ag_2O,\;CaWO_4$ and $Gd_2O_2S$:Tb loaded on titanium dioxide photocatalysts (P25, Degussa) were prepared by a calcination. Their composite films containing water-born polyurethane used as a material for immobilization were obtained by spray coating technique. The photocatalytic activity of the titanium dioxide films was characterized by decrease of UV-vis absorption spectra for methylene blue and gas chromatography for photocatalytic decomposition of formaldehyde diluted in water. It was shown that the $Gd_2O_2S$:Tb modified titanium dioxide films had good photocatalytic properties and followed the first-order kinetic model with regard to photocatalytic decoloration of methylene blue. Especially in formaldehyde photodegradation experiment, decrease rate of concentration of the titanium dioxide films with $Gd_2O_2S$:Tb modifying was about 35% larger than that of the unloaded titanium dioxide film.

Near-IR Quantum Cutting Phosphors: A Step Towards Enhancing Solar Cell Efficiency

  • Jadhav, Abhijit P.;Khan, Sovann;Kim, Sun Jin;Cho, So-Hye
    • Applied Science and Convergence Technology
    • /
    • v.23 no.5
    • /
    • pp.221-239
    • /
    • 2014
  • The global demand for energy has been increasing since past decades. Various technologies have been working to find a suitable alternative for the generation of sustainable energy. Photovoltaic technologies for solar energy conversion represent one of the significant routes for the green and renewable energy production. Despite of remarkable improvement in solar cell technologies, the generation of power is still suffering with lower energy conversion efficiency, high production cost, etc. The major problem in improving the PV efficiency is spectral mismatch between the incident solar spectrum and bandgap of a semiconductor material used in solar cell. Luminescent materials such as rare-earth doped phosphor materials having the quantum efficiency higher than unity can be helpful for photovoltaic applications. Quantum cutting phosphors are the most suitable candidates for the generation of two or more low-energy photons for the absorption of every incident high-energy photons. The phosphors which are capable of converting UV photon to visible and near-IR (NIR) photon are studied primarily for photovoltaic applications. In this review, we will survey various near IR quantum cutting phosphors with respective to their synthesis method, energy transfer mechanism, nature of activator, sensitizer and dopant materials incorporation and energy conversion efficiency considering their applications in photovoltaics.

Preparation of CdS-AC/TiO2 Composites Designed for a High Photonic Effect and their Photocatalytic Activity Under Visible Light

  • Park, Chong-Yeon;Choi, Jong-Geun;Ghosh, Trisha;Oh, Won-Chun
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.5
    • /
    • pp.433-438
    • /
    • 2011
  • In this study, CdS combined activated carbon/$TiO_2$ (CdS-AC/$TiO_2$) composites were prepared by a sol-gel method to improve the photocatalytic performance of $TiO_2$. These composites were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX) and UV-vis analysis. The photocatalytic activities were examined by the degradation of methylene blue (MB) under visible light irradiation. The photodegradation rate of MB under visible light irradiation reached 90.1% in 120 min. The kinetics of MB degradation was plotted alongside the values calculated from the Langmuir-Hinshelwood equation. The 0.2 CAT sample showed the best photocatalytic activity, which might be due to an increase in the photo-absorption effect by activated carbon and the cooperative effect of CdS.