DOI QR코드

DOI QR Code

Synthesis of Bi2WO6 Nanometer Sheet Shaped and Approach to the Photocatalysis

  • Kim, Dong-Young (Department of Chemistry, College of Science, Yeungnam University) ;
  • Kim, Su-Jung (Department of Chemistry, College of Science, Yeungnam University) ;
  • Kang, Mi-Sook (Department of Chemistry, College of Science, Yeungnam University)
  • Published : 2009.03.20

Abstract

For use as a photocatalyst, bismuth tungsten oxide, $Bi_2WO_6$, was successfully synthesized by hydrothermal treatment at pH = 11 and heating at 200 ${^{\circ}C}$ for 24h, and samples were subsequently thermal treated at 400, 600, and 800 ${^{\circ}C}$ to increase crystallinity. TEM results revealed that the initial untreated particles were sheet‐shaped, grain size was below 80 nm, and it increased with treated temperatures. These $Bi_2WO_6$ samples absorbed at around 400 nm in the visible light range and the intensity of absorption was particularly strongest in samples thermal treated at 600 ${^{\circ}C}$. Their photoluminescence abilities, related to the recombination between the excited electrons and holes, were overall small for other general photocatalysts such as TiO2, and the smallest in the case of thermal treatment at 600 ${^{\circ}C}$, as reversible result of UV‐visible absorbance. Methyl orange of 5.0 ppm aqueous solution was almost completely removed after 2 h when treated over the $Bi_2WO_6$ thermal treated at 600 ${^{\circ}C}$.

Keywords

References

  1. Hoffmann, M. R.; Martin, S. T.; Choi, W.; Bahnemannt, D. W. Chem. Rev. 1995, 95, 69 https://doi.org/10.1021/cr00033a004
  2. Linsebigler, A. L.; Lu, G.; Yates Jr. J. T. Chem. Rev. 1995, 95, 735 https://doi.org/10.1021/cr00035a013
  3. Carp, O.; Huisman, C. L.; Reller, A. Progr. Solid State Chem. 2004, 32, 33 https://doi.org/10.1016/j.progsolidstchem.2004.08.001
  4. Almquist, C. B.; Biswas, P. J. Catal. 2002, 212, 145 https://doi.org/10.1006/jcat.2002.3783
  5. S$\ddot{o}$kmen, M.; $\ddot{O}$zkan, A. J. Photochem. & Photobiol. A: Chem. 2002, 147, 77 https://doi.org/10.1016/S1010-6030(01)00627-X
  6. Gelover, S.; Mondrag$\'{o}$n, P.; Jim$\'{o}$nez, A. J. Photochem. & Photobiol. A: Chem. 2004, 165, 241 https://doi.org/10.1016/j.jphotochem.2004.03.023
  7. Pore, V.; Heikkil$\ddot{a}$, M.; Ritala, M.; Leskel$\ddot{a}$, M.; Areva, S. J. Photochem. & Photobiol. A: Chem. 2006, 177, 68 https://doi.org/10.1016/j.jphotochem.2005.05.013
  8. Tristao, J. C.; Magalhaes, F.; Corio, P.; Terezinha, M.; Sansiviero, C. J. Photochem. & Photobiol. A: Chem. 2006, 181, 152 https://doi.org/10.1016/j.jphotochem.2005.11.018
  9. Graf, C.; Ohser-Wiedemann, R.; Kreisel, G. J. Photochem. & Photobiol. A: Chem. 2007, 188, 226 https://doi.org/10.1016/j.jphotochem.2006.12.019
  10. Ullah, R.; Dutta, J. J. Hazard. Mater. 2008, 156, 194 https://doi.org/10.1016/j.jhazmat.2007.12.033
  11. Frit, B.; Mercurio, J. P. J. Alloy. Compd. 1992, 188, 27 https://doi.org/10.1016/0925-8388(92)90639-Q
  12. Sharma, V.; Shukla, A. K.; Gopalakrishnan, J. J. Mater. Chem. 1994, 4, 703 https://doi.org/10.1039/jm9940400703
  13. Zhang, S.; Shen, J.; Fu, H.; Dong, W.; Zheng, Z.; Shi, L. J. Solid State Chem. 2007, 180, 1456 https://doi.org/10.1016/j.jssc.2007.02.013
  14. Zhao, X.; Xu, T.; Yao, W.; Zhang, C.; Zhu, Y. Appl. Catal. B: Environ. 2007, 72, 92 https://doi.org/10.1016/j.apcatb.2006.10.006
  15. Fu, H.; Zhang, L.; Yao, W.; Zhu, Y. Appl. Catal. B: Environ. 2006, 66, 100 https://doi.org/10.1016/j.apcatb.2006.02.022
  16. Zhang, C.; Zhu, Y. F. Chem. Mater. 2005, 17, 3537 https://doi.org/10.1021/cm0501517
  17. Fu, H. B.; Pan, C. S.; Yao, W. Q.; Zhu, Y. F. J. Phys. Chem. B: Environ. 2005, 109, 22432 https://doi.org/10.1021/jp052995j
  18. Hsieh, C. Y.; Fung, K.-Z. J. Phys. Chem. Solids 2008, 69, 302 https://doi.org/10.1016/j.jpcs.2007.07.106
  19. Zhou, L.; Wang, W.; Zhang, L. J. Mol. Catal. A: Chem. 2007, 268, 195 https://doi.org/10.1016/j.molcata.2006.12.026
  20. Mouider, J. F.; Stickle, W. F.; Soboi, P. E.; Bomben, K. D. Handbook of X-ray Photoelectron Spectroscopy; Perkin-Elmer Coporation: USA, 1992; p 90

Cited by

  1. Photocatalyst vol.89, pp.4, 2013, https://doi.org/10.1111/php.12054
  2. Photocatalytic propylene epoxidation on Bi2WO6-based photocatalysts vol.41, pp.7, 2015, https://doi.org/10.1007/s11164-013-1523-3
  3. Effect of carbon coating on the electrochemical properties of Bi2WO6 nanoparticles by PVP-assisted sonochemical method vol.45, pp.5, 2015, https://doi.org/10.1007/s10800-015-0822-3
  4. Photocatalytic Chemoselective Aerobic Oxidation of Thiols to Disulfides Catalyzed by Combustion Synthesized Bismuth Tungstate Nanoparticles in Aqueous Media vol.27, pp.1, 2016, https://doi.org/10.1007/s10876-015-0928-0
  5. Visible-light-driven photocatalysis of heterostructure Ag/Bi2WO6 nanocomposites and their photocatalytic degradation of dye under visible light irradiation vol.42, pp.3, 2016, https://doi.org/10.1007/s11164-015-2109-z
  6. Synthesis and Activity of Ag-Doped Bi2WO6 Photocatalysts vol.743-744, pp.1662-9752, 2013, https://doi.org/10.4028/www.scientific.net/MSF.743-744.560
  7. with Ag additions vol.121, pp.1755-1315, 2018, https://doi.org/10.1088/1755-1315/121/2/022022
  8. Novel synthesis of bismuth tungstate hollow nanospheres in water–ethanol mixed solvent vol.46, pp.38, 2009, https://doi.org/10.1039/c0cc01249a
  9. Structural and optical characterization of metal tungstates (MWO 4 ; M=Ni, Ba, Bi) synthesized by a sucrose-templated method vol.7, pp.None, 2013, https://doi.org/10.1186/1752-153x-7-80
  10. Surfactant assisted sonochemical synthesis of Bi2WO6nanoparticles and their improved electrochemical properties for use in pseudocapacitors vol.4, pp.9, 2009, https://doi.org/10.1039/c3ra44941f
  11. Effect of morphology and temperature treatment control on the photocatalytic and photoluminescence properties of SrWO4 crystals vol.19, pp.2, 2009, https://doi.org/10.1039/c9pp00331b