• Title/Summary/Keyword: UV-VIS Spectrophotometry

Search Result 89, Processing Time 0.022 seconds

Evaluation of at-home bleaching protocol with application on different surfaces: bleaching efficacy and hydrogen peroxide permeability

  • Heloisa Forville;Michael Willian Favoreto;Michel Wendlinger;Roberta Micheten Dias;Christiane Philippini Ferreira Borges;Alessandra Reis;Alessandro D. Loguercio
    • Restorative Dentistry and Endodontics
    • /
    • v.48 no.4
    • /
    • pp.33.1-33.12
    • /
    • 2023
  • Objectives: This study aimed to evaluate the bleaching efficacy and hydrogen peroxide permeability in the pulp chamber by the at-home bleaching gel in protocols applied on different dental surfaces. Materials and Methods: Forty premolars were randomly into 4 groups: control group no bleaching, only application on the buccal surface (OB), only application on the lingual surface (OL) and application in buccal and lingual surfaces, simultaneously (BL). At-home bleaching gel (White Class 7.5%) was used for the procedure. The bleaching efficacy was evaluated with a digital spectrophotometer (color change in CIELAB [ΔEab] and CIEDE 2000 [ΔE00] systems and Whitening Index for Dentistry [ΔWID]). The hydrogen peroxide permeability in the pulp chamber (㎍/mL) was assessed using UV-Vis spectrophotometry and data were analyzed for a 1-way analysis of variance and Tukey's test (α = 0.05). Results: All groups submitted to bleaching procedure showed bleaching efficacy when measured with ΔEab and ΔE00 (p > 0.05). Therefore, when analyzed by ΔWID, a higher bleaching efficacy were observed for the application on the groups OB and BL (p = 0.00003). Similar hydrogen peroxide permeability was found in the pulp chambers of the teeth undergoing different protocols (p > 0.05). Conclusions: The application of bleaching gel exclusively on the OB is sufficient to achieve bleaching efficacy, when compared to BL. Although the OL protocol demonstrated lower bleaching efficacy based on the ΔWID values, it may still be of interest and relevant in certain clinical scenarios based on individual needs, requiring clinical trials to better understand its specificities.

Lycopene Content and Fruit Morphology of Watermelon (Citrullus lanatus) Germplasm Collections

  • Jae-Jong Noh;On-Sook Hur;Na-Young Ro;Jae-Eun Lee;Ae-Jin Hwang;Bit-Sam Kim;Ju-hee Rhee;Jung Yoon Yi;Ji Hyun Kim;Ho-Sun Lee;Jung-Sook Sung;Myung-Kon Kim;Awraris Derbie Assefa
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2020.08a
    • /
    • pp.32-32
    • /
    • 2020
  • High-quality and high-phytonutrient watermelon fruits have strong market opportunities besides their health related benefits. Hence, investigating quality and nutritional related traits of watermelon genetic resources could provide important baseline data in breeding for increased lycopene content thereby increasing the marketability of watermelon. To this end, we have examined some fruit morphological traits and lycopene content of 105 genetic resources. The morphological characters were recorded on the field and inside laboratory and lycopene was measured using spectrophotometric and HPLC methods. Watermelon fruits have shown a diverse morphological characters. Red and pink fleshed fruits dominated in the entire collections. Fruits with higher thickness of rind were found to exhibit less soluble solid content (SSC). Korean origin fruits were characterized by intermediate SSC while USA, RUS, TJK, TKM, TWN, and URY originated fruits had the highest SSC. The lycopene content varied between 41.37 and 182.82 ㎍/g, 2.81 and 163.72 ㎍/g, and 3.54 and 255.47 ㎍/g using HPLC, UV-Vis, and microplate reader instrumnets, respectively. Red- and pink-fleshed fruits had the highest levels of lycopene content compared to the yellow- and orange-fleshed. Lycopene content had a significant positive correlation with SSC, however, no correlations were detected between lycopene and other quantitative fruit morphological characters.

  • PDF

Impact of salt stress on the α-tocopherol, carotenoid derivatives and flocculation efficiency of Euglena sp., Indonesian Strain

  • Ria Amelia;Arief Budiman;Andhika Puspito Nugroho;Eko Agus Suyono
    • Fisheries and Aquatic Sciences
    • /
    • v.27 no.6
    • /
    • pp.379-391
    • /
    • 2024
  • Tocopherol, carotenoids, and chlorophyll are the primary components of the antioxidative response in microalgae. Conditions of stress, such salt stress, can trigger the processes responsible for the accumulation of tocopherol and carotene. It has been found that the most difficult part of culturing microalgae is keeping it affordable. This study investigated the effects of different salt types and concentrations on the amount of α-tocopherol, carotenoid derivatives, and flocculation efficiency of Euglena sp. Cultures of Euglena sp. was developed under salt stress conditions of NaCl 200 mM and KCl 200 mM. UV-VIS spectrophotometry was used to confirm the presence of α-tocopherol and carotenoid derivatives under thirteen days of salt stress testing. Increasing salinity has a significant effect on Euglena sp., causing spherical cell morphologies with aspect ratio 1.385 ± 0.031 for NaCl 200 mM and 1.414 ± 0.040 for KCl 200 mM. Increasing salinity also slowing down development with specific growth rate value of 0.171 ± 0.006 per day and 0.122 ± 0.029 per day for NaCl and KCl 200 mM, respectively. Nevertheless, the amount of α-tocopherol in Euglena sp. increases with a high salt concentration; algal cells flocculated more successfully when increasing the salt concentrations (NaCl 200 mM and KCl 200 mM) was added. Due to the inhibition of photosynthetic activity in salt-stressed cells, the control group exhibited higher levels of carotenoid derivatives (ranging from 0.5-1 ㎍/mL) and pheophytin a and b (0.0062 ± 0.001 ㎍/mL and 0.0064 ± 0.001 ㎍/mL) than the group treated with salt stress. In conclusion, salt stress was an effective way to raises the concentration of α-tocopherol and significantly reduce the expense of harvesting Euglena sp.

Spectroscopic Studies on U(VI) Complex with 2,6-Dihydroxybenzoic acid as a Model Ligand of Humic Acid (분광학을 이용한 흄산의 모델 리간드인 2,6-Dihydroxybenzoic acid와 우라늄(VI)의 착물형성 반응에 관한 연구)

  • Cha, Wan-Sik;Cho, Hye-Ryun;Jung, Euo-Chang
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.9 no.4
    • /
    • pp.207-217
    • /
    • 2011
  • In this study the complex formation reactions between uranium(VI) and 2,6-dihydroxybenzoate (DHB) as a model ligand of humic acid were investigated by using UV-Vis spectrophotometry and time-resolved laser-induced fluorescence spectroscopy (TRLFS). The analysis of the spectrophotometric data, i.e., absorbance changes at the characteristic charge-transfer bands of the U(VI)-DHB complex, indicates that both 1:1 and 1:2 (U(VI):DHB) complexes occur as a result of dual equilibria and their distribution varies in a pH-dependent manner. The stepwise stability constants determined (log $K_1$ and log $K_2$) are $12.4{\pm}0.1$ and $11.4{\pm}0.1$. Further, the TRLFS study shows that DHB plays a role as a fluorescence quencher of U(VI) species. The presence of both a dynamic and static quenching process was identified for all U(VI) species examined, i.e., ${UO_2}^{2+}$, $(UO_2)_2{(OH)_2}^{2+}$, and $(UO_2)_3{(OH)_5}^+$. The fluorescence intensity and lifetimes of each species were measured from the time-resolved spectra at various ligand concentrations, and then analyzed based on Stern-Volmer equations. The static quenching constants (log $K_s$) obtained are $4.2{\pm}0.1$, $4.3{\pm}0.1$, and $4.34{\pm}0.08$ for ${UO_2}^{2+}$, $(UO_2)_2{(OH)_2}^{2+}$, and $(UO_2)_3{(OH)_5}^+$, respectively. The results of Stern-Volmer analysis suggest that both mono- and bi-dentate U(VI)-DHB complexes serve as groundstate complexes inducing static quenching.

Determination of Trace Mo(VI) in Seawater Samples by Ion Pair Formation and Solvent Extraction (이온쌍 형성-용매추출에 의한 해수 중 극미량 Mo(VI)의 정량)

  • Kim, Young-Sang;Nho, Seung-Gu;Choi, Jong-Moon
    • Analytical Science and Technology
    • /
    • v.6 no.3
    • /
    • pp.329-334
    • /
    • 1993
  • The formation of Mo(VI)-alizarin red S chelate ion its extraction into an organic solvent by ion-pairing for the separarive determination of trace Mo(VI) in natural water was applied in seawater samples. Removed Fe(III) and Zn(II), and Cu(II) by precipitating with anthranilic acid at pH 4.0 and 2.0, seawater 100mL was sampled in 250mL separatory funnel. After Mo(VI)-ARS chelate ion was formed by adding 0.01M alizarin red S solution 1.0mL to the water sample of pH 4.6, 0.6% aliquat-336 chloroform solution 10mL was added and the solution was vigorously shaked for about 30 seconds to form the ion-pair between Mo(VI)-ARS and aliquat-336 perfectly. The solution was stood for about 30 minutes. And the organic phase was taken for the absorbance measurement of the ion-pair at 520nm. The content of Mo(VI) was obtained from the standard calibration curve. Several extraction conditions such as pH, adding amounts of alizarin red S and aliquat-336, and shaking and standing times were optimized and the interferences and release of concomitant ions was also studied. This procedure was applied to the analysis of Eastern and Yellow seawaters. It could be confirmed from the recoveries of over 85% in samples spiked with a given amount of Mo(VI) that this method was also quantitative in the determination of trace Mo(VI) in a seawater.

  • PDF

Chelation of Tannin from Sorghum Extract using Fe(II) (수수 타닌의 Fe(II) 킬레이트)

  • Jung, Yang Sook;Seo, Hyo Sik;Bae, Do Gyu
    • Current Research on Agriculture and Life Sciences
    • /
    • v.33 no.1
    • /
    • pp.1-5
    • /
    • 2015
  • This study investigated the chelation of a sorghum bran extract using iron (Fe) as a new natural colorant. The composition of the sorghum bran extract and chelation conditions were both examined. The thermal properties of the chelated colorants were analyzed using differential scanning calorimetry (DSC) and a thermal analyzer system(TGA). The sorghum bran extract solution showed a maximum absorbance at 281 nm based on UV/Vis spectrophotometry. According to the chelation pH conditions, pH 7.5 was the most effective. The chelation of the sorghum bran extract increased rapidly when increasing the iron concentration up to 2 mg/L, with no further chelation at a higher concentration. The particle size distribution curve for the chelated tannin revealed four groups: $4.5{\sim}17{\mu}m$, $20{\sim}42{\mu}m$, $45{\sim}80{\mu}m$, and $83{\sim}160{\mu}m$. In a DSC analysis, endothermic peaks attributed to the pyrolysis of the extract and chelated tannin were found at $318^{\circ}C$ and $415^{\circ}C$, respectively. In a TGA analysis, the chelation was shown to increase the final degradation temperature from $253^{\circ}C$ to $382^{\circ}C$, confirming that the chelation improved the thermal stability.

Preparation of Fe4[Fe(CN)6]3 Coated on Mica or TiO2/Mica for Infrared Reflective Blue Pigments and Isolation-heat Properties of These Paints (Fe4[Fe(CN)6]3가 코팅된 Mica 또는 TiO2/Mica 적외선 반사용 청색안료 제조 및 이 도료의 차열 특성 평가)

  • Jung, Ha-Young;Kim, Dae Sung;Lee, Hyun-Jin;Lee, Seung-Ho;Lim, Hyung Mi;Choi, Byung-Ki;Kang, Kwang-Jung;Choi, Jin-Sub
    • Korean Journal of Materials Research
    • /
    • v.23 no.12
    • /
    • pp.672-679
    • /
    • 2013
  • $Fe_4[Fe(CN)_6]_3$ coated on a mica or $TiO_2$/mica surface as infrared reflective blue pigment was prepared by a hydrothermal method. $Fe_4[Fe(CN)_6]_3$, used as coloring agent, was uniformly coated on mica or $TiO_2$/mica under the optimized condition of a 1.2 : 1 weight ratio between iron(III) chloride hexahydrate and potassium ferrocyanidetrihydrate at the initial pH level of 4.5 at $70^{\circ}C$. The infrared (IR)-reflective pigments were characterized by SEM, Zeta-potenial, FT-IR, and UV-VIS NIR spectrophotometry. Especially the CIE color coordinate and total solar reflectance(TSR) properties of the pigments were investigated in relation to variation of the coating and coated substrate thicknesses. Isolation-heat paint was prepared with 20 wt% blue pigments fully dispersed in acryl-urethane resin and several additives to coat the film uniformly. The films were also measured with CIE color coordinate, TSR, and the surface temperature was recorded by an isolation-heat measuring system. The pigments and films of $Fe_4[Fe(CN)_6]_3$ coated on mica and $TiO_2$/mica showed high TSR values compared with the TSR value of $Fe_4[Fe(CN)_6]_3$ itself. According to the increase of TSR value, the property of isolation-heat is effective. To realize the optimal blue color, we applied the the pigment to $TiO_2$ coated mica(TM(b)) which has blueish interference color. The pigment of $Fe_4[Fe(CN)_6]_3$ coated on TM(b) shows a strong blue color compared with that of $Fe_4[Fe(CN)_6]_3$ coated on $TiO_2$/Mmca(TM(w)), which has a whitish interference color.

Lycopene Content and Fruit Morphology of Red, Pink, Orange, and Yellow Fleshed Watermelon (Citrullus lanatus) Germplasm Collections

  • Noh, Jae-Jong;Hur, On-Sook;Ro, Na-Young;Lee, Jae-Eun;Hwang, Ae-Jin;Kim, Bit-Sam;Rhee, Ju-hee;Yi, Jung Yoon;Kim, Ji Hyun;Lee, Ho-Sun;Sung, Jung-Sook;Kim, Myung-Kon;Assefa, Awraris Derbie
    • Korean Journal of Plant Resources
    • /
    • v.33 no.6
    • /
    • pp.624-637
    • /
    • 2020
  • High-quality and high-phytonutrient watermelon fruits have strong market opportunities besides their health related benefits. Hence, investigating quality and nutritional related traits of watermelon genetic resources could provide important baseline data in breeding for increased lycopene content thereby increasing the marketability of watermelon. To this end, we have examined some fruit morphological traits and lycopene content of 105 genetic resources. Seeds, originally obtained from 22+ countries, were obtained from the National Agrobiodiversity Center, Jeonju, South Korea, grown in an experimental field and harvested at a fully mature stage. The size of pistil scar (SPS), the width of stripes (WS), weight of fruit (WF), length of fruit (LF), width of fruit (WIF), the thickness of pericarp (TP), soluble solids content (SSC), fruit shape in longitudinal section, ground color of skin, the intensity of the green color of skin, fruit shape at the apical part, grooving distribution, conspicuousness of stripes, and main color of the flesh were recorded on the field and inside laboratory and the lycopene was measured using spectrophotometric and HPLC methods. Watermelon fruits have shown a diverse morphological characters. Red and pink fleshed fruits dominated in the entire collections. Fruits with higher thickness of rind were found to exhibit less soluble solid content (SSC). Korean origin fruits were characterized by intermediate SSC while the United States of America (USA), Russia (RUS), Tajikistan (TJK), Turkmenistan (TKM), Taiwan (TWN), and Uruguay (URY) originated fruits had the highest SSC. The lycopene content varied between 41.37 and 182.82 ㎍/g, 2.81 and 163.72 ㎍/g, and 3.54 and 255.47 ㎍/g using HPLC, UV-Vis spectrophotometer, and microplate reader spectrophotometer, respectively. Red- and pink-fleshed fruits had the highest levels of lycopene content compared to the yellow- and orange-fleshed. Lycopene content had a significant positive correlation with SSC, however, no correlations were detected between lycopene and other quantitative fruit morphological characters. Our study demonstrated high diversity exists in fruit morphological traits and lycopene content of the germplasm collections which provide beneficial baseline data for a future breeding program and utilization of watermelon germplasm collections in gene banks for the maintenance and improvement of the current levels of production, marketability, and health-related benefit of watermelon fruits.

Free radical scavenging and α-glucosidase inhibitory effects of a roots extract of Aruncus dioicus var. kamtschaticus (재배 삼나물 뿌리 추출물의 자유 라디칼소거 및 α-glucosidase 저해활성)

  • Jeong, Gyeong Han;Kim, Tae Hoon
    • Food Science and Preservation
    • /
    • v.23 no.7
    • /
    • pp.989-994
    • /
    • 2016
  • As part of our continuing search for bioactive natural products, the antioxidant and ${\alpha}$-glucosidase inhibitory activities of an 80% methanolic extract and organic solvent soluble-portions of Aruncus dioicus var. kamtschaticus roots were investigated by using a bioassay system. The antioxidant activity of A. dioicus var. kamtschaticus roots extract and organic solvent soluble-portions were assessed by examining with 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) ($ABTS^+$) radical scavenging. In addition, anti-diabetic effects of the A. dioicus var. kamtschaticus root extract and organic solvent soluble-portions were tested via ${\alpha}$-glucosidase inhibition assay. The total phenolic contents of the products were determined by applying UV-VIS spectrophotometry. All tested samples showed dose-dependent radical scavenging and ${\alpha}$-glucosidase inhibitory properties. In particular, the ${\alpha}$-glucosidase inhibitory and radical scavenging effects of the ethyl-acetate (EtOAc)-soluble portion from the roots of A. dioicus var. kamtschaticus were greater than those from other solvent-soluble portions. These results indicate that A. dioicus var. kamtschaticus could be considered a new effective source of natural antioxidants and anti-diabetic materials. More systematic research of the constituents of the roots of this A. dioicus variety will be conducted to further develop its antioxidative and anti-diabetic properties.