DOI QR코드

DOI QR Code

Impact of salt stress on the α-tocopherol, carotenoid derivatives and flocculation efficiency of Euglena sp., Indonesian Strain

  • Received : 2023.12.21
  • Accepted : 2024.02.03
  • Published : 2024.06.30

Abstract

Tocopherol, carotenoids, and chlorophyll are the primary components of the antioxidative response in microalgae. Conditions of stress, such salt stress, can trigger the processes responsible for the accumulation of tocopherol and carotene. It has been found that the most difficult part of culturing microalgae is keeping it affordable. This study investigated the effects of different salt types and concentrations on the amount of α-tocopherol, carotenoid derivatives, and flocculation efficiency of Euglena sp. Cultures of Euglena sp. was developed under salt stress conditions of NaCl 200 mM and KCl 200 mM. UV-VIS spectrophotometry was used to confirm the presence of α-tocopherol and carotenoid derivatives under thirteen days of salt stress testing. Increasing salinity has a significant effect on Euglena sp., causing spherical cell morphologies with aspect ratio 1.385 ± 0.031 for NaCl 200 mM and 1.414 ± 0.040 for KCl 200 mM. Increasing salinity also slowing down development with specific growth rate value of 0.171 ± 0.006 per day and 0.122 ± 0.029 per day for NaCl and KCl 200 mM, respectively. Nevertheless, the amount of α-tocopherol in Euglena sp. increases with a high salt concentration; algal cells flocculated more successfully when increasing the salt concentrations (NaCl 200 mM and KCl 200 mM) was added. Due to the inhibition of photosynthetic activity in salt-stressed cells, the control group exhibited higher levels of carotenoid derivatives (ranging from 0.5-1 ㎍/mL) and pheophytin a and b (0.0062 ± 0.001 ㎍/mL and 0.0064 ± 0.001 ㎍/mL) than the group treated with salt stress. In conclusion, salt stress was an effective way to raises the concentration of α-tocopherol and significantly reduce the expense of harvesting Euglena sp.

Keywords

Acknowledgement

This manuscript is a part of the first author's dissertation.

References

  1. Affenzeller MJ, Darehshouri A, Andosch A, Lutz C, Lutz-Meindl U. Salt stress-induced cell death in the unicellular green alga Micrasterias denticulata. J Exp Bot. 2009;60:939-54. https://doi.org/10.1093/jxb/ern348
  2. Afiukwa CA, Ogbonna JC. Effects of mixed substrates on growth and vitamin production by Euglena gracilis. Afr J Biotechnol. 2007;6:2612-5.
  3. Aqilla WZ, Andeska DP, Erfianti T, Sadewo BR, Suyono EA. Tocopherol content of Euglena sp. isolated from Yogyakarta under glucose and ethanol mixture treatment. Yuz Yil Univ J Agric Sci. 2023;33:450-460.
  4. Bazzani E, Lauritano C, Mangoni O, Bolinesi F, Saggiomo M. Chlamydomonas responses to salinity stress and possible biotechnological exploitation. J Mar Sci Eng. 2021;9:1242.
  5. Brunet C, Johnsen G, Lavaud J, Roy S. Pigments and photoacclimation processes. In: Roy S, Llewellyn CA, Egeland ES, Johnsen G, editors. Phytoplankton pigments: characterization, chemotaxonomy and applications in oceanography. Cambridge: Cambridge University Press; 2011. p. 880.
  6. Chen CY, Kao AL, Tsai ZC, Shen YM, Kao PH, Ng IS, et al. Expression of synthetic phytoene synthase gene to enhance β-carotene production in Scenedesmus sp. CPC2. Biotechnol J. 2017;12:1700204.
  7. Church J, Hwang JH, Kim KT, McLean R, Oh YK, Nam B, et al. Effect of salt type and concentration on the growth and lipid content of Chlorella vulgaris in synthetic saline wastewater for biofuel production. Bioresour Technol. 2017;243:147-53. https://doi.org/10.1016/j.biortech.2017.06.081
  8. Cirulis JT, Ashley Scott J, Ross GM. Management of oxidative stress by microalgae. Can J Physiol Pharmacol. 2013;91:15-21. https://doi.org/10.1139/cjpp-2012-0249
  9. Cramer M, Myers J. Growth and photosynthetic characteristics of Euglena gracilis. Arch Mikrobiol. 1952;17:384-402. https://doi.org/10.1007/BF00410835
  10. Das K, Roychoudhury A. Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front Environ Sci. 2014;2:53.
  11. Discart V, Bilad MR, Marbelia L, Vankelecom IFJ. Impact of changes in broth composition on Chlorella vulgaris cultivation in a membrane photobioreactor (MPBR) with permeate recycle. Bioresour Technol. 2014;152:321-8. https://doi.org/10.1016/j.biortech.2013.11.019
  12. Eifert JD. Predictive modeling of the aerobic growth of Staphylococcus aureus 196E using a nonlinear model and response surface analysis [Ph.D. dissertation]. Virginia: Faculty of the Virginia Polytechnic Institute and State University; 1994.
  13. Eijckelhoff C, Dekker JP. A routine method to determine the chlorophyll a, pheophytin a and β-carotene contents of isolated Photosystem II reaction center complexes. Photosynth Res. 1997;52:69-73. https://doi.org/10.1023/A:1005834006985
  14. Farkas A, Pap B, Zsiros O, Patai R, Shetty P, Garab G, et al. Salinity stress provokes diverse physiological responses of eukaryotic unicellular microalgae. Algal Res. 2023;73:103155.
  15. Guermazi W, Masmoudi S, Trabelsi NA, Gammoudi S, Ayadi H, Morant-Manceau A, et al. Physiological and biochemical responses in microalgae Dunaliella salina, Cylindrotheca closterium and Phormidium versicolor NCC466 exposed to high salinity and irradiation. Life. 2023;13:313.
  16. Hanief S, Prasakti L, Pradana YS, Cahyono RB, Budiman A. Growth kinetic of Botryococcus braunii microalgae using logistic and Gompertz models. AIP Conf Proc. 2020;2296:020065.
  17. Hao W, Yanpeng L, Zhou S, Xiangying R, Wenjun Z, Jun L. Surface characteristics of microalgae and their effects on harvesting performance by air flotation. Int J Agric Biol Eng. 2017;10:125-33.
  18. Hasanuzzaman M, Nahar K, Fujita M. Role of tocopherol (vitamin E) in plants: abiotic stress tolerance and beyond. In: Ahmad P, Rasool S, editors. Emerging technologies and management of crop stress tolerance: volume 2: a sustainable approach. Cambridge, MA: Academic Press; 2014. p. 267-89.
  19. Indrawati R, Zubaidah E, Sutrisno A, Limantara L, Brotosudarmo THP. Remnant photosynthetic pigments in tea dregs: identification, composition, and potential use as antibacterial photosensitizer. Slovak J Food Sci. 2021;15:835-45. https://doi.org/10.5219/1651
  20. Jeon MS, Oh JJ, Kim JY, Han SI, Sim SJ, Choi YE. Enhancement of growth and paramylon production of Euglena gracilis by co-cultivation with Pseudoalteromonas sp. MEBiC 03485. Bioresour Technol. 2019;288:121513.
  21. Kanna SD, Domonkos I, Kobori TO, Dergez A, Bode K, Nagyapati S, et al. Salt stress induces paramylon accumulation and fine-tuning of the macro-organization of thylakoid membranes in Euglena gracilis cells. Front Plant Sci. 2021;12:725699.
  22. Kusmita L, Puspitaningrum I, Limantara L. Identification, isolation and antioxidant activity of pheophytin from green tea (Camellia sinensis (L.) Kuntze). Procedia Chem. 2015;14:232-8. https://doi.org/10.1016/j.proche.2015.03.033
  23. Li M, Munoz HE, Goda K, Di Carlo D. Shape-based separation of microalga Euglena gracilis using inertial microfluidics. Sci Rep. 2017;7:10802.
  24. Lichtenthaler HK, Buschmann C. Chlorophylls and carotenoids: measurement and characterization by UV-VIS spectroscopy. In: Wrolstad RE, editor. Current protocols in food analytical chemistry. Hoboken, NJ: John Wiley & Sons; 2001.
  25. Liu Z, Barnett I, Lin X. A comparison of principal component methods between multiple phenotype regression and multiple SNP regression in genetic association studies. Ann Appl Stat. 2020;14:433-51. https://doi.org/10.1214/19-AOAS1312
  26. Lopez-Hernandez JF, Garcia-Alamilla P, Palma-Ramirez D, Alvarez-Gonzalez CA, Paredes-Rojas JC, Marquez-Rocha FJ. Continuous microalgal cultivation for antioxidants production. Molecules. 2020;25:4171.
  27. Mu Y, Wang G, Yu HQ. Kinetic modeling of batch hydrogen production process by mixed anaerobic cultures. Bioresour Technol. 2006;97:1302-7. https://doi.org/10.1016/j.biortech.2005.05.014
  28. Munshi FM, Hwang JH, Stoll S, Lee WH. Reverse salt flux effect on dewatering Chlorella vulgaris in a forward osmosis system. Water. 2023;15:1462.
  29. Nazloo EK, Moheimani NR, Ennaceri H. Biodiesel production from wet microalgae: progress and challenges. Algal Res. 2022;68:102902.
  30. Nurafifah I, Hardianto MA, Erfianti T, Amelia R, Kurnianto D, Suyono EA. The effect of acidic pH on chlorophyll, carotenoids, and carotenoid derivatives of Euglena sp. as antioxidants. AACL Bioflux. 2023a;16:2391-2401.
  31. Nurafifah I, Hardianto MA, Erfianti T, Amelia R, Maghfiroh KQ, Kurnianto D, et al. The effect of acidic pH on growth kinetics, biomass productivity, and primary metabolite contents of Euglena sp. Makara J Sci. 2023b;27:97-105. https://doi.org/10.7454/mss.v27i2.1506
  32. Ogbonna JC, Tomiyamal S, Tanaka H. Heterotrophic cultivation of Euglena gracilis Z for efficient production of α-tocopherol. J Appl Phycol. 1998;10:67-74. https://doi.org/10.1023/A:1008011201437
  33. Phukoetphim N, Salakkam A, Laopaiboon P, Laopaiboon L. Kinetic models for batch ethanol production from sweet sorghum juice under normal and high gravity fermentations: logistic and modified Gompertz models. J Biotechnol. 2017;243:69-75. https://doi.org/10.1016/j.jbiotec.2016.12.012
  34. Sansone C, Brunet C. Promises and challenges of microalgal antioxidant production. Antioxidants. 2019;8:199.
  35. Singh R, Nesamma AA, Narula A, Jutur PP. Multi-fold enhancement of tocopherol yields employing high CO2 supplementation and nitrate limitation in native isolate Monoraphidium sp. Cells. 2022;11:1315.
  36. Singh R, Paliwal C, Nesamma AA, Narula A, Jutur PP. Nutrient deprivation mobilizes the production of unique tocopherols as a stress-promoting response in a new indigenous isolate Monoraphidium sp. Front Mar Sci. 2020;7:575817.
  37. Thrane JE, Kyle M, Striebel M, Haande S, Grung M, Rohrlack T, et al. Spectrophotometric analysis of pigments: a critical assessment of a high-throughput method for analysis of algal pigment mixtures by spectral deconvolution. PLOS ONE. 2015;10:e0137645.
  38. Tucker JM, Townsend DM. Alpha-tocopherol: roles in prevention and therapy of human disease. Biomed Pharmacother. 2005;59:380-7. https://doi.org/10.1016/j.biopha.2005.06.005
  39. Vershinin A. Biological functions of carotenoids - diversity and evolution. BioFactors. 1999;10:99-104. https://doi.org/10.1002/biof.5520100203
  40. Wang N, Qian Z, Luo M, Fan S, Zhang X, Zhang L. Identification of salt stress responding genes using transcriptome analysis in green alga Chlamydomonas reinhardtii. Int J Mol Sci. 2018;19:3359.
  41. Winkler MKH, Bassin JP, Kleerebezem R, van der Lans RGJM, van Loosdrecht MCM. Temperature and salt effects on settling velocity in granular sludge technology. Water Res. 2012;46:3897-902. https://doi.org/10.1016/j.watres.2012.04.034
  42. Yamashita K, Yagi T, Isono T, Nishiyama Y, Hashimoto M, Yamada K, et al. Characterization of the eyespot and hematochrome-like granules of Euglena gracilis by scanfree absorbance spectral imaging A(x, y, λ) for quantification of carotenoids within the live cells. PeerJ Prepr. 2018;6:e26906v1.
  43. Yokoi S, Bressan RA, Hasegawa PM. Salt stress tolerance of plants. JIRCAS Work Rep. 2002;23:25-33.
  44. Zhang TY, Hu HY, Wu YH, Zhuang LL, Xu XQ, Wang XX, et al. Promising solutions to solve the bottlenecks in the large-scale cultivation of microalgae for biomass/bioenergy production. Renew Sustain Energy Rev. 2016;60:1602-14. https://doi.org/10.1016/j.rser.2016.02.008
  45. Zingg JM. Vitamin E: regulatory role on signal transduction. IUBMB Life. 2019;71:456-78. https://doi.org/10.1002/iub.1986