• Title/Summary/Keyword: UV-CURABLE

Search Result 275, Processing Time 0.026 seconds

High Reliability Optical Splitters Composed of Planar Lightwave Circuits (PLC Optical Splitter(1${\times}$32)의 신뢰성 평가)

  • Gu, Hyeon-Deok;Im, Hae-Yong;Park, Jong-Hyeok;Park, Gang-Hui
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2008.07a
    • /
    • pp.265-266
    • /
    • 2008
  • The environmental and mechanical reliability of planar lightwave circuit (PLC)-type optical splitter modules is investigated with references [1, 3]. The module is composed of Y-branching silica-based waveguides on Si connected to optical fiber with UV-curable adhesives and is packaged in a metal case which is filled with humidity-resistant resin. High optical performance such as low loss, low reflection, and thermal stability are obtained through the use of this fiber connection technique. Ten reliability tests including long-term environmental and mechanical and ALT test were carried out for more then ten $1{\times}32$ channel PLC splitter modules.

  • PDF

Photoelectric Effects of Cyanine Dye and Charge Transfer Complex (Cyanine 색소 및 그 전하이동착체의 광전효과)

  • 권태선
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.11 no.1
    • /
    • pp.17-29
    • /
    • 1993
  • As inverstigating the influence of monomers and photoinitiator in the polymerization rate of photopolymerization by using IR spectroscopy, photopolymerizations initiated by ultraviolet radiation are characterized by the presence of an autoacceleration in the polymerization rate as the reaction proceeds. The conversion for the end of the autoacceleration varies considerably depending on the monomer and reaction condition which determines coil size and viscosity. In UV curable systems, the autoacceleration begins at only a few percent conversion and continues to 40% in HEA solution and 60% conversion in EHA solution. The polymerization ate in HEA solution increased as follow; DMHA > HCPK > DMPA and could be explained by the interaction between the initiating radical and HEA monomer and the size of the photodissociated radical of initiator. But the tendency of autoacceleration in EHA solution is almost independent on initiator.

  • PDF

$LiNbO_3$ integrated optic devices with an UV-curable polymer buffer layer (고분자 버퍼층을 갖는 $LiNbO_3$ 집적 광디바이스)

  • Jeong, Woon-Jo;Kim, Seong-Ku;Kim, Dae-Joung;Kim, Jong-Uk;Park, Gye-Choon;Gu, Hal-Bon
    • Proceedings of the KIEE Conference
    • /
    • 2002.11a
    • /
    • pp.230-233
    • /
    • 2002
  • A new lithium niobate optical modulator with a polymer buffer layer on Ni in-diffused optical waveguide is proposed for the fist time, successfully fabricated and examined at a wavelength of 1.3 ${\mu}m$. The experimental results show that the measured half-wave voltage is of ${\sim}10$ V and the total measured fiber-to-fiber insertion loss is of ${\sim}-6.4$ dB for a 40 mm long waveguide at a wavelength of 1.3 ${\mu}m$, respectively.

  • PDF

Experimental Study on Spin Coated Thin Cover Layer for High Numerical Aperture Optical Disc

  • Dohoon Chang;Myongdo Ro;Duseop Yoon;Park, Insik;Dongho Shin;Kim, Jinhwan
    • Macromolecular Research
    • /
    • v.9 no.6
    • /
    • pp.313-318
    • /
    • 2001
  • The present study relates to a method of manufacturing 100$\mu\textrm{m}$ thick cover layer for the high density digital versatile disc system (HD-DVD), which uses a high numerical aperture of 0.85 at 405 nm wavelength. Spin coating technique was investigated as means for manufacturing the cover layer within sufficient margins of thickness variation and with good mechanical properties including small radial and tangential tilts. The influence of processing variables such as spinning speed, spinning time, and dispensing position was investigated. The effect of viscosity of UV-curable resin was also investigated.

  • PDF

In-situ Thermally Curable Hyper-branched 10H-butylphenothiazine

  • Jo, Mi-Young;Lim, Youn-Hee;Ahn, Byung-Hyun;Lee, Gun-Dae;Kim, Joo-Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.2
    • /
    • pp.492-498
    • /
    • 2012
  • A hyper branched 10-butylphenothiazine with in-situ thermally curable methacrylate (1,3,5-tris-[$\{$10-Butyl-3-(4-(2-methyl-acryloyloxy)-phenyl)-7-yl-10H-phenothiazine$\}$]-benzene, (tris-PTMA)) was synthesized successfully. From the TGA thermogram of tris-PTMA was thermally stable up to $336^{\circ}C$. In the first heating scan of DSC thermogram, tris-PTMA showed glass transition temperature (Tg) at $140^{\circ}C$ and broad endothermic process in the region of $144-179^{\circ}C$, which is thermally curing temperature. In the second heating process, $T_g$ exhibited at $158.7^{\circ}C$ and endothermic process was not observed. Thermally cured tris-PTMA showed no big change in the UV-visible spectrum after washing with organic solvent such as methylene chloride, chloroform, toluene, indicating that thermally cured film was very good solvent resistance. Thermally cured tris-PTMA was electrochemically stable and the HOMO energy level of tris-PTMA was -5.54 eV. The maximum luminance efficiency of double layer structured polymer light-emitting diode based on in-situ thermally cured tris-PTMA was 0.685 cd/A at 16.0 V, which was higher than that of the device without thermally cured tris-PTMA (0.348 cd/A at 15.0 V).

Fabrication and Characterization of PZT Suspensions for Stereolithography based on 3D Printing

  • Cha, JaeMin;Lee, Jeong Woo;Bae, Byeonghoon;Lee, Seong-Eui;Yoon, Chang-Bun
    • Journal of the Korean Ceramic Society
    • /
    • v.56 no.4
    • /
    • pp.360-364
    • /
    • 2019
  • PZT suspensions for photo-curable 3D printing were fabricated and their characteristics were evaluated. After mixing the PZT, photopolymer, photo-initiator, and dispersant for 10 min by using a high-shear mixer, the viscosity characteristics were investigated based on the powder content. To determine an appropriate dispersant content, the dispersant was mixed at 1, 3, and 5 wt% of the powder and a precipitation test was conducted for two hours. Consequently, it was confirmed that the dispersibility was excellent at 3 wt%. Through thermogravimetric analysis, it was confirmed that weight reduction occurred in the photopolymer between 120? and 500?, thereby providing a debinding heat treatment profile. The fabricated suspensions were cured using UV light, and the polymer was removed through debinding. Subsequently, the density and surface characteristics were analyzed by using the Archimedes method and field-emission scanning electron microscopy. Consequently, compared with the theoretical density, an excellent characteristic of 97% was shown at a powder content of 87 wt%. Through X-ray diffraction analysis, it was confirmed that the crystallizability improved as the solid content increased. At the mixing ratio of 87 wt% powder and 13 wt% photo-curable resin, the viscosity was 3,100 cps, confirming an appropriate viscosity characteristic as a stereolithography suspension for 3D printing.

Camera Imaging Lens Fabrication using Wafer-Scale UV Embossing Process

  • Jeong, Ho-Seop;Kim, Sung-Hwa;Shin, Dong-Ik;Lee, Seok-Cheon;Jin, Young-Su;Noh, Jung-Eun;Oh, Hye-Ran;Lee, Ki-Un;Song, Seok-Ho;Park, Woo-Je
    • Journal of the Optical Society of Korea
    • /
    • v.10 no.3
    • /
    • pp.124-129
    • /
    • 2006
  • We have developed a compact and cost-effective camera module on the basis of wafer-scale-replica processing. A multiple-layered structure of several aspheric lenses in a mobile-phone camera module is first assembled by bonding multiple glass-wafers on which 2-dimensional replica arrays of identical aspheric lenses are UV-embossed, followed by dicing the stacked wafers and packaging them with image sensor chips. This wafer-scale processing leads to at least 95% yield in mass-production, and potentially to a very slim phone with camera-module less than 2 mm in thickness. We have demonstrated a VGA camera module fabricated by the wafer-scale-replica processing with various UV-curable polymers having refractive indices between 1.4 and 1.6, and with three different glass-wafers of which both surfaces are embossed as aspheric lenses having $230{\mu}m$ sag-height and aspheric-coefficients of lens polynomials up to tenth-order. We have found that precise compensation in material shrinkage of the polymer materials is one of the most technical challenges, in orderto achieve a higher resolution in wafer-scaled lenses for mobile-phone camera modules.

Synthesis and Characterization of Theophylline Molecularly Imprinted Polymers (테오필린 분자 날인 고분자의 합성 및 특성)

  • Ryu, Ho-Sik;Kim, Beom-Soo;Kim, Dae-Su
    • Polymer(Korea)
    • /
    • v.32 no.2
    • /
    • pp.138-142
    • /
    • 2008
  • Molecularly imprinting technology is an effective method to prepare a synthetic material with a high selectivity to a target molecule. In this study, a molecularly imprinted polymer (MIP) was synthesized via UV-polymerization using theophylline and UV-curable polyester-acrylate resin as a template molecule and a crosslinker, respectively. To elucidate the effects of functional monomer type on the performance of the MIP, each MIP was synthesized using mathacrylic acid, acrylic acid, and acryl amide as functional monomers. Each MIP showed higher rebinding capacity to theophylline than its corresponding non-imprinted polymer (NIP). The MIP synthesized using mathacrylic acid as a functional monomer showed the highest rebinding capacity to theophylline. The selectivity of the MIP was investigated using a solution with caffeine having a very similar structure to theophylline. The binding performance of the MIP to theophylline decreased when distilled water was used as a solvent, which has more polarity than chloroform.

Synthesis and Cured Film Properties of UV-Curable Caprolactone-Modified Urethane Acrylate Oligomers (광경화용 카프로락톤 변성 우레탄 아크릴레이트 올리고머 합성과 경화필름 물성에 관한 연구)

  • Kim, Jeong-Yeol;Moon, Byoung-Joon;Kang, Doo-Whan;Hwang, Seok-Ho
    • Polymer(Korea)
    • /
    • v.34 no.6
    • /
    • pp.574-578
    • /
    • 2010
  • In this study, the caprolactone modified hydroxy acrylates (CHAs) were synthesized by ring-opening reaction of caprolactone and 2-hydroxyethyl acrylate (2-HEA) as initiator. Also, the caprolactone modified urethane acrylate (UA) oligomers were synthesized by condensation reaction of previously synthesized CHAs, 2-hydroxyethyl acrylate (2-HEA) and hexamethylene diisocyanate trimer (HDT). Using the hydroxy number of CHAs, the molecular weights of the CHAs were calculated easily and their molecular weight was similar to the theoretical molecular weight of them. The viscosity of UA oligomers decreased as increasing a content of CHA in the UA oligomer. Cure films were prepared from UA oligomer, reactive diluents, and UV initiator to investigate their physical properties. The thermal stability and color difference on high temperature for the cured film were improved as increasing the crosslinking density. Their surface hardness was also increased as increasing crosslinking density of the cured films, but their elongation at break was decreased.

Superhydrophobic/Superoleophobic Spray Coatings based on Photocurable Polyurethane Acrylate and Silica Nanoparticles (UV경화형 폴리우레탄 아크릴레이트와 실리카 나노입자를 이용한 초발수 및 초발유 스프레이 코팅)

  • Kim, Su Hyun;Lee, Seung Goo
    • Journal of Adhesion and Interface
    • /
    • v.21 no.2
    • /
    • pp.58-64
    • /
    • 2020
  • This paper describes a simple approach for preparing a superhydrophobic and superoleophobic coating via spraying the mixture of UV-curable polyurethane acrylate and silica nanoparticles dispersed in a solvent. The prepared surface structures can be controlled by changing the types of solvents, the concentration of the polymer, and the amount of spraying. Superhydrophobicity and superoleophobicity are quantified by measuring the contact angle of water and oil, respectively. We also demonstrate the mechanism of spray coating with maximized superhydrophobicity and superoleophobicity through the analysis of re-entrant surface structures. At the appropriate amount and the composition of mixed solutions, the contact angle hysteresis of water and oil on the prepared surface is less than 2° and 30°, respectively. In addition, it shows excellent water-repellent and oil-repellent properties such that the oil droplet bounces off the surface.