• 제목/요약/키워드: UV resistance

Search Result 414, Processing Time 0.032 seconds

Classification and Characterization of Bacteriophages of Lectobacillus casei (Lactobacillus casei Bacperiophage의 분류 및 특성에 관한 연구)

  • 김영창;박민철;강국희;윤영호;이광웅
    • Korean Journal of Microbiology
    • /
    • v.17 no.4
    • /
    • pp.165-178
    • /
    • 1979
  • Phages of Lactobaciilus casei (PLC) isolated from plant drainage were classified and characterized. The results are as follows : 1. On the basis of host range pattern, phages could be divided into 2 groups (PLC-B and PLC-C). PLC-B group phages could be further divided into 5 sub-groups $(B_1, \;B_2, \;B_3, \;B_4, \;and\;B_5)$. Although PLC-C group phages had the same host range, they could be also divided into 2 sub-groups $(C_1\;and\;C_2)$ by morphlogical type. 2. It was $B_3$ group phages that represented a major proportion (44.4%) of phages tested. However, $B_1$ group phages were shown to have the widest host range. 3. Electron micrographs revealed that the phages fell into three different morphological types. $(B_1, \;B_2, \;and\;B_3)$ group phages hd a hexagonal head (52nm in diameter) and a sheathless noncontractile (245 nm in length). $B_4\;and\;C_2$ group phages had a hexagonal head (56 nm) and a short flexible tail (169nm) having no sheath. $B_5\;and\;C_1$ group phages were shown to have a hexagonal head (81 nm) and a contractile tail (140 nm) having a sheath, a base plate and tail fibers. 4. The inactivation of the phages by antisera indicated that serological relationships correlated completely with morphological types. 5. $B_1, \;C_1\;and\;C_2$ group phages produced a large (1, 2 mm in diameter) plaque with a clear ring. The morphology of plaques of $B_3\;and\;B_5$ group phages was the same as those produced by the above, but the average plaque sizes for $B_3\;and\;B_5$ were 0.8 mm abd 0.5 mm, respectively. $B_2\;and\;B_4$ group phages produced a small (0.5 mm) turbid plaque with an irregular edge. 6. The latent period and the average burst size of $B_1\;and\;B_3$ group phages were 90 min and 100, respectively. These phages reuqired calcium ions for their miltiplication. 7. $B_3$ group phages could not be absrobed to R-variant $KC_1$. 8. The order of resistance of phages to heat was $B_2\;>\;B_1, B_4\;and\;B_5\;>\;B_3\;and\;C_2, \;B_5$ group phages were more stable than $B_3$ in various pH values. $C_2$ group phages were more sensitive to UV irradiation than $B_1\;and\;B_3$ group phages. 9. Strains YIT9018 and IAM 1043 were induced by mitomycin C treatment. Phage particles detected in the lysates had a hexagonal head (38 and 49 nm, respectively), but no tail. Any sensitive indicator strain could not be isolated in spite of repaeated trials.

  • PDF

Condition Optimization for Overexpression of the Aklavinone 11-Hydroxylase Gene from Streptomyces peucetius subsp. caesius ATCC 27952 in Escherichia coli. (Streptomyces peucetius subsp. caesius ATCC 27952 유래 Aklavinone 11-Hydroxylase 유전자의 대장균에서의 대량발현과 최적화)

  • 민우근;홍영수;최용경;이정준;홍순광
    • Microbiology and Biotechnology Letters
    • /
    • v.26 no.1
    • /
    • pp.15-22
    • /
    • 1998
  • The dnrF gene, responsible for conversion of aklavinone to $\varepsilon$-rhodomycinone via C-11 hydroxylation, was mapped in the daunorubicin gene cluster of Streptomyces peucetius subsp. caesius ATCC 27952, close to drrAB, one of the anthracycline resistance genes. To characterize the enzymatic properties of the aklavinone 11-hydroxylase, the dnrF gene was overexpressed in Escherchia coli. The pET-22(+) plasmid which has the T7 promoter under the control of lacUV5 gene was used for the overexpression of the dnrF gene, and the recombinant plasmid pET213 that contains the dnrF gene linked to the T7 promoter of pET-22b(+) was introduced into the E. coli BL2l. When the expression of the dnrF gene was induced by IPTG at the final concentration of 1 mM, the induced protein could be detected in SDS-PAGE only in insoluble precipitate. The insoluble protein was electroeluted from the gel and used for the preparation of antiserum in mice. Various culture conditions were tested to maximize the expression of the aklavinone 11-hydroxylase in soluble form. The enzymatic activity was checked by the bioconversion experiment, and the protein was confirmed by the SDS-PAGE and the Western blot analysis. From the analysis of the data, it was concluded that the culture induced with IPTG at the final concentration of 0.02 mM at 37$^{\circ}C$ yielded the best productivity of active form of enzyme.

  • PDF

Fabrication and Characterization of an Antistiction Layer by PECVD (plasma enhanced chemical vapor deposition) for Metal Stamps (PECVD를 이용한 금속 스탬프용 점착방지막 형성과 특성 평가)

  • Cha, Nam-Goo;Park, Chang-Hwa;Cho, Min-Soo;Kim, Kyu-Chae;Park, Jin-Goo;Jeong, Jun-Ho;Lee, Eung-Sug
    • Korean Journal of Materials Research
    • /
    • v.16 no.4
    • /
    • pp.225-230
    • /
    • 2006
  • Nanoimprint lithography (NIL) is a novel method of fabricating nanometer scale patterns. It is a simple process with low cost, high throughput and resolution. NIL creates patterns by mechanical deformation of an imprint resist and physical contact process. The imprint resist is typically a monomer or polymer formulation that is cured by heat or UV light during the imprinting process. Stiction between the resist and the stamp is resulted from this physical contact process. Stiction issue is more important in the stamps including narrow pattern size and wide area. Therefore, the antistiction layer coating is very effective to prevent this problem and ensure successful NIL. In this paper, an antistiction layer was deposited and characterized by PECVD (plasma enhanced chemical vapor deposition) method for metal stamps. Deposition rates of an antistiction layer on Si and Ni substrates were in proportion to deposited time and 3.4 nm/min and 2.5 nm/min, respectively. A 50 nm thick antistiction layer showed 90% relative transmittance at 365 nm wavelength. Contact angle result showed good hydrophobicity over 105 degree. $CF_2$ and $CF_3$ peaks were founded in ATR-FTIR analysis. The thicknesses and the contact angle of a 50 nm thick antistiction film were slightly changed during chemical resistance test using acetone and sulfuric acid. To evaluate the deposited antistiction layer, a 50 nm thick film was coated on a stainless steel stamp made by wet etching process. A PMMA substrate was successfully imprinting without pattern degradations by the stainless steel stamp with an antistiction layer. The test result shows that antistiction layer coating is very effective for NIL.

Seed-borne Pathogenic Bacterium Interact with Air-borne Plant Pathogenic Fungus in Rice Fields

  • Jung, Boknam;Park, Jungwook;Kim, Namgyu;Li, Taiying;Kim, Soyeon;Bartley, Laura E.;Kim, Jinnyun;Kim, Inyoung;Kang, Yoonhee;Yun, Ki-Hoon;Choi, Younghae;Lee, Hyun-Hee;Lee, Kwang Sik;Kim, Bo Yeon;Shon, Jong Cheol;Kim, Won Cheol;Liu, Kwang-Hyeon;Yoon, Dahye;Kim, Suhkman;Ji, Sungyeon;Seo, Young Su;Lee, Jungkwan
    • 한국균학회소식:학술대회논문집
    • /
    • 2018.05a
    • /
    • pp.33-33
    • /
    • 2018
  • Air-borne plant pathogenic fungus Fusarium graminearum and seed-borne plant pathogenic bacterium Burkholderia glumae are cause similar disease symptoms in rice heads. Here we showed that two pathogens frequently co-isolated in rice heads and F. graminearum is resistant to toxoflavin produced by B. glumae while other fungal genera are sensitive to the toxin. We have tried to clarify the resistant mechanism of F. graminearum against toxoflavin and the ecological reason of co-existence of the two pathogens in rice. We found that F. graminearum carries resistance to toxoflavin as accumulating lipid in fungal cells. Co-cultivation of two pathogens resulted in increased conidia and enhanced chemical attraction and attachment of the bacterial cells to the fungal conidia. Bacteria physically attached to fungal conidia, which protected bacterium cells from UV light and allowed disease dispersal. Chemotaxis analysis showed that bacterial cells moved toward the fungal exudation compared to a control. Even enhanced the production of phytotoxic trichothecene by the fungal under presence of toxoflavin and disease severity on rice heads was significantly increased by co-inoculation rather than single inoculation. This study suggested that the undisclosed potentiality of air-born infection of bacteria using the fungal spores for survival and dispersal.

  • PDF

Role of Coelomocytes in Stress Response and Fertility in Caenorhabditis elegans (꼬마선충의 coelomocyte 세포가 스트레스 저항성 및 번식력에 미치는 영향)

  • Park, Jin-Kook;Hwang, Jin-Kyu;Song, Keon-Hyoung;Park, Sang-Kyu
    • Journal of Life Science
    • /
    • v.25 no.3
    • /
    • pp.263-268
    • /
    • 2015
  • Coelomocytes are specialized cells that continually and nonspecifically scavenge fluid from the body cavity through endocytosis in Caenorhabditis elegans. Our previous study revealed that coelmocytes were specifically required for dietary-restriction-induced longevity in C. elegans. In the present study, we examined the effect of coelomocyte ablation on the response to environmental stressors and reproduction in C. elegans. Coelomocytes were ablated using diphtheria toxin specifically expressed in coelomocytes. After exposing worms to 20 J/cm2/min of ultraviolet irradiation in vivo, the survival of the worms was monitored daily. To examine their response to heat stress, their survival after 10 h of 35℃ heat shock was measured. Oxidative stress was induced using paraquat, and the susceptibility to oxidative stress was compared between wild-type control and coelomocyte-ablated worms. The total number of progeny produced was counted, and the time-course distribution of the progeny was determined. The worms with ablated coelomocytes showed reduced resistance to ultraviolet irradiation, but the ablation of coelomocytes had no effect on their response to heat or oxidative stress. The number of progeny produced during the gravid period was significantly decreased in the coelomocyte-ablated worms. These findings suggest that coelomocytes specifically modulate the response to ultraviolet irradiation and are required for normal reproduction in C. elegans. The findings could contribute to understanding of the mechanisms underlying dietary-restriction-induced longevity.

Generation of Chemically Active Species in Hybrid Gas-Liquid Discharges (기체-액체 혼합 방전에 의한 화학적 활성종 생성 특성)

  • Chung, Jae-Woo;Locke, Bruce R.
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.5
    • /
    • pp.556-563
    • /
    • 2007
  • We carried out a laboratory scale experiment about the characteristics of chemically active species produced in hybrid gas-liquid discharges. The electrode configuration which had high voltage electrode in the gas phase and ground electrode in the liquid was utilized while high voltage electrode has been typically positioned in the liquid in other studies. Our electrode was configured in such a way as to increase the energy efficiency of chemical reactions by creating a higher electrical field strength and a narrower pulse width than the typical electrode configuration. The highest ozone concentration was obtained at 45 kV which was the medium value in operating voltages. The decrease of solution conductivity increased the resistance of liquid phase and the electric field strength through the gas phase, so ozone gene-ration rate was enhanced. The increase of voltage promoted the production rate of hydrogen peroxide by increasing the electric field strength. In a lower voltage, the increase of solution conductivity increased the degradation rate of $H_2O_2$, so the $H_2O_2$ generation rate decreased. On the other hand, the effects of UV radiation, shock waves etc. increased the $H_2O_2$ generation rate as the solution conductivity increased. A higher rate of $H_2O_2$ generation can be achieved by mixing argon to oxygen which generates a stronger and more stable discharges.

Prevalence and Toxin Genes of Food-Borne Pathogens Isolated from Toothbrush in Child Care Center (보육시설 유아 사용 칫솔의 식중독 미생물 분포 및 독소 유전자)

  • Kim, Jong-Seung;Kim, Jung-Beom
    • Journal of Food Hygiene and Safety
    • /
    • v.30 no.3
    • /
    • pp.242-248
    • /
    • 2015
  • This study was performed to investigate the microbiological contamination on toothbrushes, toothbrush caps, and tooth cleaning cups in the child care centers and to evaluate the toxin genes, toxin production ability and antibiotic resistance of food-borne pathogens. The average number of total aerobic bacteria and fungi were 5.3 log CFU and 3.2 log CFU. Coliform bacteria were detected in 41 (54.7%) of 75 toothbrushes, 13 (44.8%) of 29 toothbrush caps, and 29 (44.6%) of 65 tooth cleaning cups. Salmonella spp. was not detected in all of samples but Bacillus cereus was isolated from 1 (1.3%) of 75 toothbrushes and 2 (3.1%) of 65 tooth cleaning cups. Staphylococcus aureus was detected in 1 (1.5%) of 65 tooth cleaning cups. The nheA, nheB, nheC, hblC, hblD, hblA and entFM toxin genes were possessed in B. cereus isolated from toothbrush which also produce NHE and HBL enterotoxins. S. aureus was resistant to ampicillin and penicillin, while B. cereus was resistant to ${\beta}-lactam$ antibiotics. These results indicated that the sanitary conditions of toothbrushes and tooth cleaning cups in the child care centers should be improved promptly. The UV sterilization after drying and then storage in dried condition is required to improve the sanitary condition of toothbrushes and tooth cleaning cups in the child care center.

Carrageenan-Based Liquid Bioadhesives for Paper and Their Physical Properties (카라기난 기반 액상형 바이오 종이 접착제의 제조 및 물성에 관한 연구)

  • Oh, Seung-Jun;Han, Won-Sik;Wi, Koang-Chul
    • Journal of Conservation Science
    • /
    • v.36 no.6
    • /
    • pp.541-548
    • /
    • 2020
  • There is a growing demand for natural materials to replace adhesives based on volatile organic compounds (VOCs). However, the exclusion of VOCs from the manufacturing process leads to difficulties in manufacturing, and reduction in productivity and preservability. In this paper, we report the manufacture of natural bioadhesives using the carrageenan component of seaweed. λ-carrageenan, isolated from the extracted total carrageenan, was used to prepare a highly stable adhesive for paper. The resulting composition was 52.0 ± 1.0% λ-carrageenan, 30.5 ± 0.5% Polyvinylpyrrolidone, 1.0 ± 0.05% ethylhexylglycerin, 1.5 ± 0.05% glycerin, 13.5 ± 0.5% dextrine, and 0.6 ± 0.05% food-grade antifoam emulsion. The viscosity was found to be 1.13 ± 0.07 × 105 cP (25℃), UV degradation occurred at pH6.22, drying rate was 15min, △b* was -10.79, and △E* ab was 8.18. The bioadhesive showed an excellent adhesion strength of 44.63 kgf/cm2. Thus this adhesive showed excellent fungal resistance and good adhesive persistence, without the presence of total volatile organic compounds (TVOC), formaldehyde (HCHO), and heavy metals.

Preparation of Polyacrylate-Based Non-Reinforced Anion Exchange Membranes via Photo-Crosslinking for Reverse Electrodialysis (역전기투석용 광가교형 폴리아크릴레이트계 음이온교환막 제조)

  • Tae Hoon Kim;Seok Hwan Yang;Jang Yong Lee
    • Membrane Journal
    • /
    • v.34 no.1
    • /
    • pp.70-78
    • /
    • 2024
  • A photo-crosslinked anion exchange membrane (AEM) based on quaternary-aminated polyacrylates was developed for reverse electrodialysis (RED). Although reverse electrodialysis is a clean and renewable energy generation system, the low power output and high membrane cost are serious obstacles to its commercialization. Cross-linked AEMs without any polymer supporters were fabricated through photo-crosslinking between polymer-typed acrylates with anion conducting groups, in particular, polymer-typed acrylates were synthesized based on engineering plastic with outstanding mechanical and chemical property. The fabricated membranes showed outstanding physical, chemical, and electrochemical properties. The area resistance of the fabricated membranes (CQAPPOA-20, CQAPPOA-35, and CQAPPOA-50) were ~50% lower than that of AMV (2.6 Ω cm2). Moreover, the transport number of CQAPPOA-35 wase comparable to that of AMV, despite the thin thickness (40 ㎛) of the fabricated membranes. The RED stack with the CQAPPOA-35 membrane provided an excellent maximum power density of 2.327 W m-2 at a flow rate of 100 mL min-1, which is 15% higher than that (2.026 W m-2) of the RED stack with the AMV membrane. Considering easy fabrication process by UV photo-crosslinking and outstanding RED stack properties, the CQAPPOA-35 membrane is a promising candidate for REDs.

Evaluation of 1,1,2-trichloroethylene Removal Efficiency Using Composites of Nano-ZnO Photocatalyst and Various Organic Supports (다양한 유기계 지지체와 광촉매 Nano-ZnO 복합체를 활용한 1,1,2-trichloroethylene 제거 효율 평가)

  • Jang, Dae Gyu;Ahn, Hosang;Kim, Jeong Yeon;Ahn, Chang Hyuk;Lee, Saeromi;Kim, Jong Kyu;Joo, Jin Chul
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.11
    • /
    • pp.771-780
    • /
    • 2014
  • In this study, the various organic supports (i.e., silicone, acrylonitrile-butadiene-styrene, epoxy, and, butadiene rubber) with great sorption capacity of organic contaminants were chosen to develop nano-ZnO/organic composites (NZOCs) and to prevent the detachment of nano-ZnO particles. The water resistance of the developed NZOCs were evaluated, and the feasibility of the developed NZOCs were investigated by evaluating the removal efficiency of 1,1,2-trichloroethylene (TCE) in the aqueous phase. Based on the results from water-resistance experiments, long-term water treatment usage of all NZOCs was found to be feasible. According to the FE-SEM, EDX, and imaging analysis, nano-ZnO/butadiene rubber composite (NZBC) with various sizes and types of porosity and crack was measured to be coated with relatively homogeneously-distributed nano-ZnO particles whereas nano-ZnO/silicone composite (NZSC), nano-ZnO/ABS composite (NZAC), and nano-ZnO/epoxy composite (NZEC) with poorly-developed porosity and crack were measured to be coated with relatively heterogeneously-distributed nano-ZnO particles. The sorption capacity of NZBC was close to 60% relative to the initial concentration, and this result was mainly attributed to the amorphous structure of NZBC, hence the hydrophobic partitioning of TCE to the amorphous structure of NZBC intensively occurred. The removal efficiency of TCE in aqueous phase using NZBC was close to 99% relative to the initial concentration, and the removal efficiency of TCE was improved as the amount of NZBC increased. These results stemmed from the synergistic mechanisms with great sorption capability of butadiene rubber and superior photocatalytic activities of nano-ZnO. Finally, the removal efficiency of TCE in aqueous phase using NZBC was well represented by linear model ($R^2{\geq}0.936$), and the $K_{app}$ values of NZBC were from 2.64 to 3.85 times greater than those of $K_{photolysis}$, indicating that butadiene rubber was found to be the suitable organic supporting materials with enhanced sorption capacity and without inhibition of photocatalytic activities of nano-ZnO.