• Title/Summary/Keyword: UV protection

Search Result 290, Processing Time 0.026 seconds

Ultraviolet Protection Property of Green Tea Extract Dyed Fabrics (녹차추출물로 염색한 직물의 자외선 차단성에 관한 연구)

  • Kim, Sin-Hee
    • Textile Coloration and Finishing
    • /
    • v.18 no.6 s.91
    • /
    • pp.80-87
    • /
    • 2006
  • Nowadays, interests of ultraviolet(UV) protection increased, since the UV dosage on the earth surface has increased over years. Overdose of UV can cause various skin, eye, and even DNA damages. Therefore, it is need to develop a proper mean to protect human skin and eye from UV radiation. In this study, the UV protective effect of green tea extract dyed fabrics with various fiber types were examined. Green tea has an active moiety called 'catechin' having benzene rings in its structure, which would exert a proper UV protective property. Green tea dyed fabrics showed the increase in UV protection, and silk showed the highest increase in UV protection (from 52.2% to 84.5% in UV-A, from 66.1% to 90% in UV-B). The order of UV-A protection increase is silk, wool, nylon and acrylic, PET, and cotton. The order of UV-B protection increase is silk nylon, wool, acrylic, cotton, and PET. In case of silk and nylon, the UV protection property gradually increased as the concentration of green tea extract increased. As a result, it was proven that green tea extract dyeing can improve UV protection property of dyed fabrics in environment-friendly and biocompatible manners.

Dyeing Characteristics and UV Protection Property of Green Tea Dyed Cotton Fabrics - Focusing on the Effect of Chitosan Mordanting Condition-

  • Kim Sin-Hee
    • Fibers and Polymers
    • /
    • v.7 no.3
    • /
    • pp.255-261
    • /
    • 2006
  • There is increasing interest in the many beneficial aspects of green tea to human such as anti-carcinogenic, anti-aggregant, anti-allergic, anti-bacterial, anti-mutagenic, and anti-oxidant activities. Besides these beneficial aspects, it has been reported that green tea ingredients, especially polyphenolic families (i.e., catechin), have some UV protection property both in vivo and in topical applications. In this study, green tea extract was used as a dyeing stock for cotton and the UV protection property of the dyed cotton fabric was examined. To increase the affinity of cotton fiber to the polyphenolic components in the green tea extract, a natural biopolymer, chitosan, was used as mordanting agent. The effects of chitosan concentration in mordanting on the dyeing characteristics and the UV protection property were examined. Chitosan mordanted green tea dyed cotton showed better dyeing characteristic and higher UV protection property compared with the unmordanted green tea dyed cotton. As the chitosan concentration in mordanting increased, the dyeing efficiency and the UV protection property also increased. Therefore, adapting chitosan mordanting in green tea dyeing can increase the UV protection property of cotton fabrics to some extent.

Improvement of Wrinkle Recovery and Functional Properties in Linen Fabrics (아마직물의 방추성과 복합기능성 향상을 위한 연구)

  • Kang, Mi-Jung;Kwon, Young-Ah
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.34 no.11
    • /
    • pp.1859-1869
    • /
    • 2010
  • This study provides improved wrinkle recovery and UV protection capabilities as well as an antibacterial and deodorizing function to linen fabrics for summer shirts. The results obtained from this study are as follows. By setting catalyst concentration to 1.2% and DMDHEU concentration to 6% respectively and applying a heat treatment to them at $160^{\circ}C$ for 5 minutes, the decrease of fabric strength could be minimized and the crease resistance of linen fabrics improved. Compared to the treatment with DMDHEU only, the crease resistance of linen fabrics could be maintained and degradation of their properties could be more effectively prevented by applying the mixture of the UV absorber and the nano silver to the DMDHEU resin. The UV protection of fabrics could be improved by adding the UV absorber. Although the separate treatment of resin or the nano silver had no effect on the improvement of the UV protection properties for treated fabrics, they could increase the UV protection capability when they were combined with the UV absorber. Linen fabrics could possess an antibiosis and deodorizing capability by applying the mixture of the UV absorber, the nano silver, and the resin. The UV protection, crease resistance and flexibility of finished fabrics were maintained even after laundering. Washed treated fabrics maintained excellent antibiosis and odor free capabilities compared to untreated fabrics.

Effect on Functional Properties of the Cotton Fabrics Treated by UV-absorbers with Nanosilver/DMDHEU Treatment (자외선 흡수제 처리 시 은나노/수지 첨가가 면직물의 기능성에 미치는 영향)

  • Kang, Mi-Jung;Kwon, Young-Ah
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.33 no.9
    • /
    • pp.1463-1471
    • /
    • 2009
  • Silver ions or silver nanoparticles have multi-functional properties. The cotton fabrics for providing multi-functional properties were treated with a nanosilver powder, UV-absorbers, and dimethyloldi-hydroxyethyleneurea (DMDHEU) alone and mixed solution. The physical properties, UV protection, antibacterial, and deodorizing properties of treated cotton fabrics were evaluated. The results were as a follows. The UV protection of cotton fabrics were increased by the application of a nanosilver and Uv-absorbers mixture. The UV protection of treated fabrics were improved by nanosilver/DMDHEU/UV-absorbers mixed solution. The wrinkle recovery properties of fabrics treated with DMDHEU and nanosilver improved. The stiffness of fabrics are decreased by a nanosilver/DMDHEU/UV-absorbers mixed solution. The antibacterial properties of the fabrics treated with nanosilver/DMDHEU/UV-absorbers mixed solution is 99.99%. The functional properties of cotton fabrics are shown to be better with aanosilver/DMDHEU/UV-absorbers mixed than treated with nanosilver alone.

The degradation of EVA for the protection of solar cell by UV-rays irradiation (자외선 조사에 따른 태양전지 보호용 EVA의 열화)

  • 김규조;연복희;김승환;김완태;허창수
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.177-180
    • /
    • 2000
  • We studied the degradation of EVA for the protection of solar cell by UV-rays irradiation. We investigated the reduction of electrical efficiency, photo transmmitance and degradation of EVA by UV-rays irradiation. We utilized the UV irradiation equiped with fluorescent 313nm UV lamp and radiated for 400 hours. For the chemial analysis, we used the UV-vis spectrometer, XPS and examined the degradation mechanism by UV irradiation. It is found that the discolored phenomena, the decrease of photo transmmitance and oxidation reaction is occured by UV irradiation on the EVA sample for the protection of solar cell.

  • PDF

Effects of Enhanced Ultraviolet-B Radiation on Plants (오존층 파괴에 의한 자외선 증가가 식물에 미치는 영향)

  • Hak Yoon Kim;Moon Soo Cho
    • Journal of Bio-Environment Control
    • /
    • v.10 no.3
    • /
    • pp.197-206
    • /
    • 2001
  • The depletion of stratospheric ozone is regarded as a major environmental threat to plant growth and ecosystem. The ozone depletion has caused plants to be exposed to an increased penetration of solar ultraviolet-B (UV-B) radiation in the 280-320 nm wavelength range. Enhanced UV-B radiation may have influence on plants biological functions in many aspects including inhibition of photosynthesis, DNA damage, lipid peroxidation, changes in morphology, phenology, and biomass accumulation. To cope with the damage by UV radiation, plants have evolved to have protective mechanisms, such as photorepair, accumulation of UV-absorbing compounds, leaf thickening and activation of antioxidative enzymes. The objective of this review is to address the effects of enhanced UV-B on plant growth, UV-B action mechanisms and protection and protection mechanisms in plants.

  • PDF

Effects of ultraviolet radiation on the toxicity of water-accommodated fraction and chemically enhanced water-accommodated fraction of Hebei Spirit crude oil to the embryonic development of the Manila clam, Ruditapes philippinarum

  • Lee, Chang-Hoon;Sung, Chan-Gyoung;Kang, Sin-Kil;Moon, Seong-Dae;Lee, Ji-Hye;Lee, Jong-Hyeon
    • The Korean Journal of Malacology
    • /
    • v.29 no.1
    • /
    • pp.23-32
    • /
    • 2013
  • The purpose of this study is to evaluate the effects of oil dispersant and ultraviolet (UV) radiation on the toxicity of crude oil. The toxicity of water-accommodated fraction (WAF) and chemically enhanced water-accommodated fraction (CEWAF) of Hebei Spirit crude oil was investigated in the embryo of the Manila clam, Ruditapes philippinarum with- and without ultraviolet radiation. The WAF and CEWAF with- and without UV radiation affected significantly the embryonic development of R. philippinarum. The EC50s of WAF without UV, WAF with UV, CEWAF without UV, and CEWAF with UV were 2.82, 0.79, 1.60, and 0.45 g/L, respectively. CEWAF was 1.6 times more toxic than WAF. UV radiation increased crude oil toxicity to 3.6 times for both WAF and CEWAF. The oil dispersant and UV radiation did not affect the acute toxicity to the embryo but retarded the period of embryonic development up to 26%. R. philippinarum proved to be a sensitive species to reflect the toxic effects of oil spill combined with oil dispersant and UV radiation. It is suggested that the chemical analyses on the WAF and CEWAF is important for the identification and quantitative explanation of the phototoxic compounds in crude oil.

Dyeing of Cotton Fabrics Using Zizania latifolia Turcz. Extracts (줄풀을 활용한 면직물의 염색)

  • Lee, Hyesun
    • Textile Coloration and Finishing
    • /
    • v.27 no.1
    • /
    • pp.96-104
    • /
    • 2015
  • This study examined the pretreatment effect, appropriate dyeing conditions, color fastness and functionality of cotton fabrics dyed with Zizania latifolia Turcz. Dye uptake was substantially increased by pretreatment and chitosan pretreatment was much more effective than tannic acid pretreatment. Optimal dyeing conditions were colorant concentration of 100%, dyeing temperature of $100^{\circ}C$, dyeing time of 80 minutes and dyebath pH of 5.5. Color fastness of chitosan pretreatment and dyed cotton to washing, rubbing, perspiration and light was 4, 5, 3-4(acidic), 3(alkaline) and 3 respectively. Color fastness of tannic acid pretreatment and dyed cotton to washing, rubbing, perspiration and light was 4, 5, 3-4(acidic), 4-5(alkaline) and 4 respectively. Deodorization rates of ammonia(NH3) were 99.9% in both cases. UV protection rate were 98.3% of UV-A and 98.5% of UV-B in case of chitosan pretreatment. UV protection rate were 98.2% of UV-A and 98.5% of UV-B in case of tannic acid pretreatment. UV protection factor(UPF) was 50+ in both cases. Reduction rate of Staphyloccus aureus were 99.9% in both cases. Therefore Zizania latifolia Turcz. could be used a new functional colorant.

Combined Effect of Korean Red Ginseng and EGb 761 on Ultraviolet B-induced Contact Hypersensitivity (UV-B조사로 유도된 접촉 과민반응에 대한 홍삼과 홍삼+EGb 761 혼합물의 억제 효과 비교)

  • Choi Wookhee;Kim Duksung;Ann Hyoungsoo;Lee Youngmi;Ahn Ryoungme
    • Environmental Analysis Health and Toxicology
    • /
    • v.20 no.2 s.49
    • /
    • pp.143-151
    • /
    • 2005
  • Exposure of skin to UV-B radiation can cause inflammatory response and immunosuppression. It has been reported that Korean Red Ginseng (KRG) has several pharmacological and physiological effects such as antioxidant, anticancer and improving immune function. In this study, we investigated that topical KRG and KRG + EGb 761 (Ginkgo biloba extract) combination prevented UV-B induced inflammation and inhibition of contact hypersensitivity response. Topical application of KRG, f days prior to or 5 days after exposure to 1MED and 2MED of UV-B, reduced skin thickness compared to non -treated group and resulted in protection against immunosuppression. However, KRG+EGb 761 combination has a little protection against the only 1MED UV-B. In conclusion. Topical application of KRG was more effective than combination in protection against UV-B induced inflammation and immune suppression. Also, we suggest that KRG can provide protection from inflammation and immunosuppression by UV-B radiation.

Protection Method for Diameter-downsized Fiber Bragg Gratings for Highly Sensitive Ultraviolet Light Sensors

  • Seo, Gyeong-Seo;Ahn, Tae-Jung
    • Current Optics and Photonics
    • /
    • v.2 no.3
    • /
    • pp.221-225
    • /
    • 2018
  • We suggested the use of miniature hollow glass tubes having high ultraviolet (UV) transmission characteristics for the protection of optical-fiber-type UV sensors. We have recently proposed a highly sensitive optical sensor in the UV spectral range, using a fiber Bragg grating (FBG) coated with an azobenzene polymer as the photoresponsive material. In this study, we used UV-transparent miniature glass tubes to protect the etched FBG with the azobenzene polymer coating. This technique will be very useful for protecting various fiber-based UV sensors.