• 제목/요약/키워드: UV photodegradation

검색결과 120건 처리시간 0.023초

Color Change and Tensile Properties of Wood Flour Reinforced Polypropylene Composites; Influence of Photostabilizers

  • Lee, Sun-Young
    • 한국응용과학기술학회지
    • /
    • 제26권2호
    • /
    • pp.171-178
    • /
    • 2009
  • A comparative analysis of the hindered amine light stabilizers (HALS) and UV abosrber (UVA) and their respective photostabilizing effect on wood plastic composites (WPCs) are reported in this study. The influence of accelerated weathering on the mechanical properties of the composites and the microscopic morphology of a degraded layer on the cross section and the surface were studied. UV absorbers were more efficient at preventing composite lightening than was UV stabilizer. The amount of whitening decreased with the increase of photostabilizers. With the addition of a UV absorber (Tinuvin360), the tensile modulus and strength of the composites increased slightly. However, the addition of a light stabilizer (Tinuvin770) and a UV absorber decreased the tensile modulus and strength of the composites. After 250 and 500 hr exposure, tensile modulus and strength of the un stabilized and stabilized composites decreased. The tensile strength of UV absorber (Chimassorb81)-stabilized composites was significantly greater than that of control and light stabilizer (Tinuvin770)- and UV absorber (Tinuvin360)-stabilized composites. UV absorber-stabilized samples showed less whitening and photodegradation than control and light stabilizer-stabilized samples.

태양광과 UV-A 빛 하에서 ZnO 을 이용한 Reactive Black 5의 광분해작용 (Photomineralisation of Reactive Black 5 with ZnO using Solar and UV-A Light)

  • Amisha, S.;Selvam, K.;Sobana, N.;Swaminathan, M.
    • 대한화학회지
    • /
    • 제52권1호
    • /
    • pp.66-72
    • /
    • 2008
  • 태양광과 UV-A빛 조건하에 수용액 속에서 디아조염료의 광 촉매분해반응에 대해 조사를 해보았다. 염료의 광 촉매 분해반응에는 염료의 농도, 촉매 량, 그리고 pH와 같은 여러 가지 영향 요소들이 존재한다. 과산화수소, ammonium persulphate와 isopropanol 등의 첨가는 분해비율에 대해 큰 영향을 미친다. Langmuir-Hinshelwood model에 근거한 광 분해반응의 동역학적분석은 광분해반응은 대략적으로 pseudo first order kinetics을 따름을 알 수 있다. 광분해산물로 이산화탄소, 질산염, sulphate 이온 등이 증명되었다. 광 촉매, ZnO는 태양광 하에서보다 UV-A빛 하에서 더욱 효율적임을 발견하였다.

Efficient Photocatalytic Degradation of Salicylic Acid by Bactericidal ZnO

  • Karunakaran, Chockalingam;Naufal, Binu;Gomathisankar, Paramasivan
    • 대한화학회지
    • /
    • 제56권1호
    • /
    • pp.108-114
    • /
    • 2012
  • Salicylic acid degrades at different rates under UV-A light on $TiO_2$, ZnO, CuO, $Fe_2O_3$, $Fe_3O_4$ and $ZrO_2$ nanocrystals and all the oxides exhibit sustainable photocatalysis. While ZnO-photocatalysis displays Langmuir-Hinshelwood kinetics the others follow first order on [salicylic acid]. The degradation on all the oxides enhance with illumination intensity. Dissolved oxygen is essential for the photodegradation. ZnO is the most efficient photocatalyst to degrade salicylic acid. Besides serving as the effective photocatalyst to degrade salicylic acid it also acts as a bactericide and inactivates E.coli even in absence of direct light.

UV-Degradation Chemistry of Oriental Lacquer Coating Containing Hindered Amine Light Stabilizer

  • 홍진후;박미영;김현경;최정오
    • Bulletin of the Korean Chemical Society
    • /
    • 제21권1호
    • /
    • pp.61-64
    • /
    • 2000
  • FT-IR/ATR analysis shows that the oriental lacquer coating network degrades mostly in the unsaturated side chain. The rate of increase in carbonyl intensity (a measure of photodegradation) during the accelerated weathering test was substantially different for the unstabilized and stabilized samples; adding 2 wt% HALS into the oriental lacquer formulation enhanced photostabilization up to three times. Weight loss measurements, another indication of photodegradation, and SEM analysis support this conclusion. Despite the presence of the photo-stabilizer, the other properties of the lacquer were not significantly affected. In particular, the curing behavior of purified lacquer (PL) and HALS-stabilized samples is similar, although the in-situ DETA analysis showed that addition of HALS can slightly retard the cure reaction rate in oriental lacquer coating. It is hypothesized that this cure retardation may be related to the salt formation between HALS and acid of oriental lacquer.

Rhodomine B dye removal and inhibitory effect on B. subtilis and S. aureus by WOx nanoparticles

  • Ying, Yuet Lee;Pung, Swee Yong;Ong, Ming Thong;Pung, Yuh Fen
    • Journal of Industrial and Engineering Chemistry
    • /
    • 제67권
    • /
    • pp.437-447
    • /
    • 2018
  • Visible-light-driven wide bandgap semiconductor photocatalysts were commonly developed via doping or coupling with another narrow bandgap metal oxide. However, these approaches required extra processing. The aim of study was to evaluate the photocatalytic performance of narrow bandgap $WO_x$ nanoparticles. A mixture of $WO_2$ and $WO_3$ nanoparticles were synthesized using solution precipitation technique. The photodegradation of RhB by these nanoparticles more effective in UV light than in visible light. In antibacterial susceptibility assay, $WO_x$ nanoparticles demonstrated good antibacterial against Gram-positive bacteria. The cell wall of bacterial was the main determinant in antibacterial effect other than $W^{4+}/W^{6+}$ ions and ROS.

Photocatalytic Degradation and Adsorptive Removal of Tetracycline on Amine-Functionalized Graphene Oxide/ZnO Nanocomposites

  • Thanh Truong Dang;Hoai-Thanh Vuong;Sung Gu Kang;Jin Suk Chung
    • Korean Chemical Engineering Research
    • /
    • 제61권4호
    • /
    • pp.635-644
    • /
    • 2023
  • Due to the rapid development of the livestock industry, particularly due to residual pharmaceutical antibiotics, environmental populations have been negatively affected. Herein, we report a ZnO/melamine-functionalized carboxylic-rich graphene oxide (ZFG) photocatalyst for visible light-driven photocatalytic degradation of tetracycline hydrochloride in aqueous solutions. The properties of the photocatalysts were evaluated by XRD, FTIR, XPS, Fe-SEM, HR-TEM, TGA, Raman spectroscopy, UV-Vis spectroscopy, zeta potential, and electrochemical measurements. The photocatalytic activity was measured using high-performance liquid chromatography. The photocatalytic properties of the ZFG photocatalyst evaluated against the tetracycline hydrochloride (TCH) antibiotic under visible light irradiation showed superior photodegradation of 96.27% within 60 min at an initial pH of 11. The enhancement of photocatalytic degradation was due to the introduction of functionalized graphene, which increases the light-harvesting capability and molecular adsorption capability in addition to minimizing the recombination rate of photogenerated charge carriers due to its role as an electron acceptor and mediator.

50%TiO2/6%WO3 졸 용액에서의 톨루엔 처리에 대한 아세톤의 광활성 증가효과 (Photolysis Improvement of Toluene in 50%TiO2/6%WO3 Sol Solutions Sensitized by Acetone)

  • 신혜승;김재현
    • 한국환경보건학회지
    • /
    • 제38권3호
    • /
    • pp.261-268
    • /
    • 2012
  • Objectives: The photocatalytic degradation of toluene in a batch mode photoreactor for the purpose of the hazardous waste treatment was investigated. Methods: Kinetic experiments using a low pressure mercury lamp (Lambda Scientific Pty Ltd, 50 Watt) emitting both UV and visible light were performed at $31^{\circ}C$ over toluene concentrations ranging from 10 to 50 mg/l in water with $50%TiO_2/6%WO_3$ (TW) concentration of 1 g/l at a pH of 6. Results: Kinetic studies showed that $50%TiO_2/6%WO_3$ (TW) photocatalyst was highly active in toluene degradation; we observed that 99% of the pollutant was degraded after six hours under visible irradiation; furthermore, we observed that adsorption onto TW catalyst was responsible for the decrease of toluene with pseudo-first order kinetics. It was also found that oxygen as a radical source in the sol medium played a significant role in affecting the photodegradation of toluene, especially with a two-fold elevation. This increase was achieved by a more than four-fold elevation of the photodegradation of toluene in the presence of acetone than without, presumably via an energy transfer mechanism. Conclusions: We concluded that photodegradation in acetone and oxygen molecules along with TW was an effective method for the removal of toluene from wastewater.

주사슬에 말로네이트기를 가지는 신규 폴리에스테르의 합성과 광분해 특성을 이용한 형광 이미지 패터닝 (Synthesis of Novel Network Polyesters Containing Malonate Group in Main Chain and Their Fluorescence Image Patterning via Photodegradation)

  • 정선주;곽기섭;정인태;이동호;노형진;윤근병
    • 폴리머
    • /
    • 제32권1호
    • /
    • pp.56-62
    • /
    • 2008
  • Diol과 diacid 단량체들의 다양한 조합으로 2단계 축합중합으로 가교구조를 가지는 세 종류의 신규 폴리에스테르를 새롭게 합성하였다. 이들 고분자 필름은 $240^{\circ}C$에서 수 시간 고온 열처리하면, 주사슬에 의한 금지 전이에도 불구하고, 가시영역에서 흡수를 나타내었으며 330 nm 이상의 파장에서 여기시키면 청색에서 근적외선에 이르는 넓은 범위에서 발광을 나타내었다. 신규 폴리에스테르의 발광 현상은 주사슬에 포함된 말로네이트기가 고온 열처리를 통해 자기축합 형태의 Knoevenagel 반응을 일으켜 분자 내 공역구조를 형성하기 때문이다. 또한 이들 고분자의 열적 특성은 가지화도 차이에 의한 화학적 가교정도에 따라 현저한 차이를 보였을 뿐 아니라 광분해 현상도 관찰되었다. 필름 상태에서 강한 자외선을 조사하여 말로네이트기의 분해반응을 유도하고, 이를 이용한 형광 이미지 패터닝을 수행한 결과, 고해상도의 이미지 패턴을 얻을 수 있었다.

Kinetics study of photo-degradation of poly(Vinyl Chloride) films in presence of organotin(IV) complex derivatives

  • Alaa Mohammed;Mohammed Kadhom;Marwa Fadhil;Alhamzah D. Hameed;Ahmed Imad;Ahmed Alamiery;Muna Bufaroosha;Rahimi M. Yusop;Ali Jawad;Emad Yousif
    • 분석과학
    • /
    • 제37권4호
    • /
    • pp.251-260
    • /
    • 2024
  • As polymers became very important in our lives, their negative impact on general health and the environment raised a serious issue. Here, enhancing their life term is presented as a compromise solution between the need and harm. In the study, six PVC films, the plain and five filled with improvers, underwent radiation exposure for 300 hours at room temperature to investigate their photodegradation rates. The modified films were embedded with organotin(IV) complex derivatives (Ph3SnL, Ph2SnL2, Bu3SnL, Bu2SnL2, and Me2SnL2 (where L is levofloxacin)), and their effectiveness was evaluated. The PVC films were compared before and after exposure to various tests including UV-Vis spectroscopy, gel content analysis, theoretical calculations, and EDX microscopy. Findings indicated that the presence of organotin(IV) complex derivatives, particularly Ph3SnL, notably decreased UV light absorbance and the amount of gel content in PVC sheets in comparison to untreated PVC. Furthermore, EDX analysis showed that the PVC-Ph3SnL blend exposed to radiation exhibited the highest chlorine content, reaching 30 %. This blend demonstrated superior efficacy in stabilizing the polymeric materials.

염소계 VOCs의 UV 광분해 연구: 제거율 및 부산물 (UV Photodegradation of Chlorinated VOCs: Removal Efficiency and Products)

  • 강인선
    • 한국대기환경학회지
    • /
    • 제33권2호
    • /
    • pp.87-96
    • /
    • 2017
  • In this study, 4 gases containing typical chlorinated volatile organic compounds (VOCs) were treated by ultraviolet (UV) irradiation. The typical chlorinated VOCs are dichloromethane (DCM), trichloromethane (TCM), carbon tetrachloride (CTC) and trichloroethylene (TCE). The removal efficiency (RE) and the products of chlorinated VOCs by UV irradiation are investigated. At this time, 2 types of background gas (air and nitrogen) were used to figure out the RE by photooxidation and photolysis. The specification of UV-lamp used in this study was low-pressure mercury lamp emitting wavelength of 185~254 nm. The experimental conditions were set as initial VOC concentration of $180{\pm}10ppm$, empty bed retention time (EBRT) of 53 s, temperature of $23{\pm}2^{\circ}C$ and relative humidity of $65{\pm}5%$. In the photolysis condition with nitrogen ($N_2$) as background gas, the averaged RE of the 4 types of chlorinated VOCs was about 24% higher than that with photooxidation; and the REs of VOCs except CTC were confirmed as >99%. The composition of off-gases after UV photooxidation in air was investigated and several intermediates from DCM, TCM and TCE were detected by GC/MS. Among them, phosgene which is a toxics was detected as an intermediate of TCM. In addition, the concentration of carbon dioxide ($CO_2$) in the off-gases was measured to calculate the mineralization rate (MR). With the photooxidation, TCE showed the highest RE (>99%) while MR was the lowest (17%); and the MR of DCM was the highest (86%). In addition, particulate matters (PM) in the off-gases was also detected and high concentrated $PM_{10}$ ($21,580{\mu}g{\cdot}m^{-3}$) and $PM_{2.5}$ ($6,346{\mu}g{\cdot}m^{-3}$) were detected in TCE off-gas. More than 99% of the chlorinated VOCs could be removed using UV254-185 nm lamp, while it is necessary to conduct further studies on the production and treatment of secondary pollutants.