• Title/Summary/Keyword: UV Photolithography

Search Result 42, Processing Time 0.027 seconds

Fabrication of Micro-channels for Wave-Micropump Using Stereolithography and UV Photolithography (광조형법과 UV 포토리소그래피를 이용한 웨이브 마이크로펌프 미세 채널 제작)

  • Loh, Byoung-Gook;Kim, Woo-Sik;Shim, Kwang-Bo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.12
    • /
    • pp.128-135
    • /
    • 2007
  • Micro-channels for a wave micropump have been fabricated using the Stereolithography and UV Photolithography. The micro-channel with a channel height of $500\;{\mu}m$ was fabricated with stereolithography. UV photolithography was used for producing micro-channels with a channel length less than $100\;{\mu}m$. The fabrication process data including spinning rpm, pre-bake and post-bake time, and develop time for single layer and multiple layer 3D micro-structures using SU-8 photo resist are experimentally found. A film mask printed with a 40,000 dpi laser printer was used for UV lithography and micro-structures in the order of tens of micrometers in dimension were successfully fabricated.

UV molding of Microlens Array on the Simulated Optoelectronic Device (모사 광전자 소자 상에 적용한 마이크로렌즈 어레이의 UV 성형)

  • 구승완;김석민;강신일;손현주
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10a
    • /
    • pp.377-380
    • /
    • 2003
  • Recently, demand of digital products with optoelectronic device is increasing rapidly. A microlens array is applied to improve optical efficiency on optoelectronic device, and it is usually fabricated by photolithography and reflow process after planarization layer coating process. UV molding process is more suitable for mass production of high quality microlens array than photolithography and reflow process. In the present study, microlens array was fabricated on the simulated optoelectronic device with planarization layer by aligned UV molding process. The shape of replicated microlens was measured, and the section image of molded part was examined.

  • PDF

Fabrication of Polymer Thin Films on Solid Substrates (고체 기판에 고분자 박막의 고정화)

  • Kim, Min Sung;Jeong, Yeon Tae
    • Applied Chemistry for Engineering
    • /
    • v.21 no.2
    • /
    • pp.200-204
    • /
    • 2010
  • Surface properties are important for determining the functions and uses of materials. So modification of materials with polymer thin films has emerged as an important method to control the physical and chemical properties of the surface layer. We report a simple and effective method to photochemically attach thin polymeric layers to solid surface without chemical derivatization of the substrate and/or the polymer. The system is based on a photoreactive poly(4-vinylpyridine) (P4VP) thin film which is formed on the $SiO_{2}$ surface via spin coating. This substrate is then covered with another polymer film that is reacted with the benzyl radical moieties by UV irradiation. As a result of photochemical reaction, a thin layer of the later polymer is covalently bound to the surface of P4VP. Unbounded polymer is removed by sonication. The thickness of the attached film is a function of the irradiation time and the molecular weight of the polymer. Spatially defined polymer thin films can be fabricated by way of photolithography.

UV-nanoimprint Patterning Without Residual Layers Using UV-blocking Metal Layer (UV 차단 금속막을 이용한 잔류층이 없는 UV 나노 임프린트 패턴 형성)

  • Moon Kanghun;Shin Subum;Park In-Sung;Lee Heon;Cha Han Sun;Ahn Jinho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.12 no.4 s.37
    • /
    • pp.275-280
    • /
    • 2005
  • We propose a new approach to greatly simplify the fabrication of conventional nanoimprint lithography (NIL) by combined nanoimprint and photolithography (CNP). We introduce a hybrid mask mold (HMM) made from UV transparent material with a UV-blocking Cr metal layer placed on top of the mold protrusions. We used a negative tone photo resist (PR) with higher selectivity to substrate the CNP process instead of the UV curable monomer and thermal plastic polymer that has been commonly used in NIL. Self-assembled monolayer (SAM) on HMM plays a reliable role for pattern transfer when the HMM is separated from the transfer layer. Hydrophilic $SiO_2$ thin film was deposited on all parts of the HMM, which improved the formation of SAM. This $SiO_2$ film made a sub-10nm formation without any pattern damage. In the CNP technique with HMM, the 'residual layer' of the PR was chemically removed by the conventional developing process. Thus, it was possible to simplify the process by eliminating the dry etching process, which was essential in the conventional NIL method.

  • PDF

Photolithography Process of Organic Thin Film with A New Water Soluble Photoresist

  • Kim, Kwang-Hyun;Song, Chung-Kun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1038-1039
    • /
    • 2004
  • We developed a new photoresist which was composed of polyaniline, uv-curing agent, N-methyl-2- pyrrolidine (NMP) and N-Butyl alcohol (BuOH) as solution. The photoresist is characterized by the capability of being developed in water. We successfully patterned pentacene thin film, which was vulnerable to organic solvent and thus could not be patterned by the conventional photolithography process, with the water soluble photoresist and the minimum feature size was found to be 2um.

  • PDF

Micropatterning of Peptides to Solid Surface by Deep-UV Lithography using N-hydroxysuccinimidyl phenol azide (N-hydroxysuccinimidyl phenyl azide와 광반응을 이용한 펩타이드의 마이크로형태 고정화)

  • 김진희;김현정;김종원;장준근;민병구;최태부
    • Journal of Biomedical Engineering Research
    • /
    • v.19 no.5
    • /
    • pp.441-448
    • /
    • 1998
  • Defined spatial localization of biomolecules on the polymer surface Is potentially powerful method to generate biocompatible surface. Photolithography and photochemistry can be used to immobilize peptides only al a given region of the surface. In this study, peptide RGDS, one of the endothelial cells recognition sites of fibronectin, was covalently immobilized on the polystyrene coated surface with micropattern. It was performed by photochemical reactivity of a synthesized N-hydroxysuccinimidyl phenyl azide. The micropatterning was confirmed by staining with fluorescent dye, aminoacetamido fluorescein. Endothelial cell adhesion was observed only on the RGDS immobilized areas.

  • PDF

Synthesis of Imide Monomers for Application to Organic Photosensitive Interdielectric Layer

  • Kwon, Hyeok-Yong;Vu, Quang Hung;Lee, Yun-Soo;Park, Lee-Soon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.816-819
    • /
    • 2008
  • A negative photoresist formulation was developed utilizing synthesized UV monomers containing imide linkage, photoinitiator, UV oligomer, and alkali developable polymer matrix. It was found that via-holes with good resolution, high transmittance and thermal resistance could be obtained by photolithographic process utilizing the negative-type photoresist formulations.

  • PDF

Striation of coated conductors by photolithography process

  • Byeong-Joo Kim;Miyeon Yoon;Myeonghee Lee;Sang Ho Park;Ji-Kwang Lee;Kyeongdal Choi;Woo-Seok Kim
    • Progress in Superconductivity and Cryogenics
    • /
    • v.25 no.4
    • /
    • pp.50-53
    • /
    • 2023
  • In this study, the photolithography process was chosen to reduce the aspect ratio of the cross-section of a high-temperature superconducting (HTS) tape by dividing the superconducting layer of the tape. Reducing the aspect ratio decreases the magnetization losses in the second-generation HTS tapes generated by AC magnetic fields. The HTS tape used in the experiment has a thin silver (Ag) layer of about 2 ㎛ on top of the REBCO superconducting layer and no additional stabilizer layer. A dry film resist (DFR) was laminated on top of the HTS tape by a lamination method for the segmentation. Exposure to a 395 nm UV lamp on a patterned mask cures the DFR. Dipping with a 1% Na2CO3 solution was followed to develop the uncured film side and to obtain the required pattern. The silver and superconducting layers of the REBCO films were cleaned with an acid solution after the etching. Finally, the segmented HTS tape was completed by stripping the DFR film with acetone.

Fabrication of embedded circuit patterns for Ie substrates using UV laser (UV 레이저 응용 반도체 기판용 임베디드 회로 패턴 가공)

  • Sohn, Hyon-Kee;Shin, Dong-Sig;Choi, Ji-Yeon
    • Laser Solutions
    • /
    • v.14 no.1
    • /
    • pp.14-18
    • /
    • 2011
  • Semiconductor industry demands decrease in line/space dimensions of IC substrates. Particularly for IC substrates for CPU, line/space dimensions below $10{\mu}m/10{\mu}m$ are expected to be used in production since 2014. Conventional production technologies (SAP, etc.) based on photolithography are widely agreed to be reaching capability limits. To address this limitation, the embedded circuit fabrication technology using laser ablation has been recently developed. In this paper, we used a nanosecond UV laser and a picosecond UV laser to fabricate embedded circuit patterns into a buildup film with $SiO_2$ powders for IC substrate. We conducted SEM and EDS analysis to investigate surface quality of the embedded circuit patterns. Experimental results showed that due to higher recoil pressure, picosecond UV laser ablation of the buildup film generated a better surface roughness.

  • PDF

New lithography technology to fabricate arbitrary shapes of patterns in nanometer scale (나노미터 크기의 임의 형상을 제작하기 위한 새로운 리소그래피 기술)

  • 홍진수;김창교
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.5 no.3
    • /
    • pp.197-203
    • /
    • 2004
  • New lithography techniques are employed for the patterning of arbitrary shapes in nanometer scale. When, in the photolithography, the electromagnetic waves such as UV and X-ray are incident on the mask patterned in nanometer scale, the diffraction effect is unavoidable and degrades images of the mask imprinted on wafer. Only a convex lens is well-known Fourier transformer. It is possible to make the mask Fourier-transformed with the convex lens, even though the size of pattern on the mask is very large compared to the wavelength of electromagnetic wave. If the mask, modified according to new technique described in this paper, was placed at the front of the lens and was illuminated with laser beam, the nanometer-size patterns are only formed on the plane called Fourier transform plane. The new method presented here is quite simple setup and comparable with present and next generation lithographies such as UV/EUV photolithograpy and electron projection lithography when compared in attainable minimum linewidth. In this paper, we showed our theoretical research work in the field of Fourier optics, . In the near future, we are going to verify this theoretical work by experiments.

  • PDF