• Title/Summary/Keyword: UV Laser

Search Result 421, Processing Time 0.031 seconds

A Study of Low-k Wafer Engraving Processes by Using Laser with Pico-second Pulse Width (자외선 피코초 레이저를 이용한 Low-k 웨이퍼 인그레이빙 특성에 관한 연구)

  • Moon, Seong-Wook;Bae, Han-Seong;Hong, Yun-Suk;Nam, Gi-Jung;Kwak, No-Heung
    • Journal of the Semiconductor & Display Technology
    • /
    • v.6 no.1 s.18
    • /
    • pp.11-15
    • /
    • 2007
  • Low-k wafer engraving process has been investigated by using UV pico-second laser with high repetition rate. Wavelength and repetition rate of laser used in this study are 355 nm and 80 MHz, respectively. Main parameters of low-k wafer engraving processes are laser power, work speed, assist gas flow, and protective coating to eliminate debris. Results show that engraving qualities of low-k layer by using a laser with UV pico-second pulse width and high repetition rate had better kerf edge and higher work speed, compared to one by conventional laser with nano-second pulse width and low repletion rate in the range of kHz. Assist gas and protective coating to eliminate debris gave effects on the quality of engraving edge. Total engraving width and depth are obtained less than $20\;{\mu}m$ and $10\;{\mu}m$ at more than 500 mm/sec work speed, respectively. We believe that engraving method by using UV pico-second laser with high repetition rate is useful one to give high work speed in laser material process.

  • PDF

Micromachining for plastic mold steel using DPSS UV laser and wet etching (DPSS UV Laser와 습식 식각을 이용한 금형강 미세 가공)

  • Min, Kyoung-Ik;Kim, Jae-Gu;Cho, Sung-Hak;Choi, Doo-Sun;Whang, Kyung-Hyun
    • Laser Solutions
    • /
    • v.12 no.3
    • /
    • pp.1-6
    • /
    • 2009
  • This paper describes the method for the fabrication of micro dot array on a plastic mold steel using DPSS (diode pumped solid-states) UV laser and wet etching process. We suggest the process of the ablation of a photoresist (PR) coated on plastic mold steel and wet etching process using solutions of various concentrations of $FeCl_3$, $HNO_3$ in water as etchant. This method makes it possible to fabricate metallic roller mold because the microstructures are directly fabricated on the metal surface. In the range of operating conditions studied, $17\;{\mu}J$ laser pulse energy and 50 ms laser exposure time, an etchant containing 40wt% $FeCl_3$, 5wt% $HNO_3$ and etch time for 45 s gave the $10\;{\mu}m$ of micro dot pattern on plastic mold steel.

  • PDF

Micro Channel Fabrication Technology Using UV Laser Micromachining (UV 레이저 마이크로머시닝을 이용한 마이크로 채널 제작기술)

  • 양성빈;장원석;김재구;신보성;전병희
    • Transactions of Materials Processing
    • /
    • v.13 no.3
    • /
    • pp.216-224
    • /
    • 2004
  • In this study, we have developed a new UV$({\lambda}=355nm)$ laser micromachining technology by direct ablation method without masks. This technology allows that 3D micro parts can be fabricated rapidly and efficiently with a low price. And it has a benefit of reducing fabricating process simply. Due to micro parts' fabrication, such technologies need the control of XYZ stages with high precision, the design of optical devices to maintain micron spot sizes of laser beam and the control technology of laser focus. The developed laser manufacturing process for laser micromachining is that, after extracting coordinates of shape data from CAD model data, a beam path considering manufacturing features of laser beam is created by using genetic algorithm. This generated manufacturing process is sent to stage controller. In order to improve the surface quality of micro parts, we have carried out experiments on iteration manufacturing and beam step-over by using a minimum focus size. Moreover, we have fabricated a micro-channel through the developed laser micromachining technology and verified it through the results.

The wavelength shift of waveguide Bragg grating with its polymer overclad irradiated by UV-laser (UV-laser 조사에 따른 폴리머 상부 클래드 광도파로 브래그 격자의 파장 변화)

  • Park, Dong-Yeong;Choe, Gi-Seon;Yun, Jae-Sun;Baek, Se-Jong;Mun, Hyeong-Myeong;Kim, Jin-Bong;Kim, Gwang-Taek;Im, Gi-Geon
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2007.02a
    • /
    • pp.221-222
    • /
    • 2007
  • The UV laser trimming can be useful to have an accurate performance specification of the passive waveguide devices. In order to measure the change of the refractive index of polymer overclad layer under the irradiation of uv light in a high precision Bragg grating is fabricated on the silica core of planar waveguide and the corresponding transmittance spectrum was analyzed. An effective refractive index change of $4.7x10^{-5}$ was obtained for a straight waveguide when its $60{\mu}m$-thick overclad was irradiated by UV laser pulses of its total fluence 24 $J/cm^2$.

  • PDF

Micromachining of powder injection molded parts using ns UV laser (나노초 UV 레이저를 이용한 분말사출 부품의 미세기공)

  • Ahn, Dae-Hwan;Park, Seong-Jin;Kwon, Young-Sam;Kim, Dong-Sik
    • Laser Solutions
    • /
    • v.13 no.1
    • /
    • pp.1-5
    • /
    • 2010
  • ln this work, the feasibility of using a UV laser for micromachining of powder injection molded parts is examined experimentally. The results, although preliminary, indicate that microfabrication of various parts by laser micromachining of the injection molded parts and then sintering is promising. Particularly, micromachining of a mixture composed of stainless steel particles and polyrner binders was studied using a KrF excimer laser.

  • PDF

Coupled Thermal-Structure Analysis of UV Laser Pulsing according to the Thickness of Copper Film on the Surface of Polyimide (UV 펄스 레이저 가공의 구리 박막 두께에 따른 열-구조 연성 해석)

  • Shin, Minjae;Shin, Bosung
    • Laser Solutions
    • /
    • v.16 no.2
    • /
    • pp.7-11
    • /
    • 2013
  • Recently advanced laser processing is widely introduced to improve the efficiency of micro part production and to reduce the rate of inferior goods. In this paper the trend of delamination of single layer with both thin copper and polyimide according to the variation of copper thickness was investigated using the coupled thermal-structural analysis of ANSYS. From these analyses results, some conclusions were obtained. Firstly, the maximum temperature was increasing with respect to decrease of copper thickness. Secondly the maximum strain which was in general estimation the main effect of the delamination was observed in case of the copper thickness of $5{\mu}m$. Finally the trend of the delamination was decreasing with increasing the thickness of copper layer.

  • PDF