• 제목/요약/키워드: UV A-LED

검색결과 246건 처리시간 0.036초

New Whitening agent: Kojyl-APPA

  • Hwang, Jae-Sung;Kim, Duck-Hee;Soomi Anh;Baek, Heung-Soo;Park, Hyunjung -Jin;Lee, Jin-Young;Lee, Byeong-Gon;Ihseop Chang;Kang, Hak-Kee
    • 대한화장품학회지
    • /
    • 제27권1호
    • /
    • pp.119-131
    • /
    • 2001
  • Exposure of the human skin to UV-light can cause sun-tanning, photoaging and even photo-carcinogenesis. Melanin is important in protecting the skin against UV damage, but excessive or uneven melanin production can lead to the formation of freckles and aged spot. Control of hyperpigmentation is becoming even more important as aged population continues to grow. These needs led us to develop effective and safe depigmenting-agent, kojyl 3-aminopropyl phosphate (kojyl-APPA), called Whitegen. The development of whitegen was based on the fact that phosphate group of 3-aminopropyl phosphate can make kojic acid more compatible to the skin membrane and more stable. Instability of kojic acid has been a problem in cosmetic use. The insertion of phosphoester group has been recognized as a powerful tool to improve such physical properties as solubility and stability, because the phosphodiester residue is well characterized as a non-toxic moiety, having a high affinity for cell membranes. Kojyl-APPA showed no tyrosinase inhibition effect compared to kojic acid in vitro, but showed tyrosinase inhibition effect in situ. It means that kojyl-APPA is converted to kojic acid enzymatically in cells. Kojyl-APPA showed the inhibitory activity on melanin synthesis in mouse melanoma and normal humal melnaocytes and also showed long-lasting stability in comparison with its original form (kojic acid). Kojyl-APPA showed depigmenting effects when applied to UVB-induced hyperpigmentated region of guinea pig skin. Based on these results, kojyl 3-aminopropyl phosphate can be used as a safe and effective ingredient for the brightness and cleanness of skin.

  • PDF

TFT-LCD용 휘도 성능을 향상시키는 나노 와이어 그리드 편광 필름의 제작 (Fabrication of a Nano-Wire Grid Polarizer for Brightness Enhancement in TFT-LCD Display)

  • 허종욱;남수용
    • 한국인쇄학회지
    • /
    • 제29권3호
    • /
    • pp.105-124
    • /
    • 2011
  • TFT-LCD consists of LCD panel on the top, circuit unit on the side and BLU on the bottom. The recent development issues of BLU-dependent TFT-LCD have been power consumption minimization, slimmerization and size maximization. As a result of this trend, LED is adopted as BLU instead of CCFL to increase brightness and to reduce thickness. In liquid crystal displays, the light efficiency is below 10% due to the loss of light in the path from a light source to an LCD panel and presence of absorptive polarizer. This low efficiency results in low brightness and high power consumption. One way to circumvent this situation is to use a reflective polarizer between backlight units and LCD panels. Since a nano-wire grid polarizer has been known as a reflective polarizer, an idea was proposed that it can be used for the enhancement of the brightness of LCD. The use of reflective polarizing film is increasing as edge type LED TV and 3D TV markets are growing. This study has been carried out to fabrication of the nano-wire grid polarizer(NWGP) and investigated the brightness enhancement of LCD through polarization recycling by placing a NWGP between an c and a backlight unit. NWGPs with a pitch of 200nm were fabricated using laser interference lithography and aluminum sputtering and wet etching. And The NWGP fabrication process was using by the UV imprinting and was applied to plastic PET film. In this case, the brightness of an LCD with NWGPs was 1.21 times higher than that without NWGPs due to polarization recycling.

Synthesis and photoluminescence of Ca3Si3O8F2: Ce4+, Eu3+, Tb3+ phosphor

  • Suresh, K.;PoornachandraRao, Nannapaneni V.;Murthy, K.V.R.
    • Advances in materials Research
    • /
    • 제3권4호
    • /
    • pp.227-232
    • /
    • 2014
  • $Ce^{4+}$, $Eu^{3+}$, $Tb^{3+}$ co-doped $Ca_3Si_3O_8F_2$ phosphor was synthesized via solid state reaction method using $CaF_2$, $CaCO_3$ and $SiO_2$ as raw materials for the host and $Eu_2O_3$, $CeO_2$, and $Tb_4O_7$ as activators. The luminescent properties of the phosphor was analysed by spectrofluorophotometer at room temperature. The effect of excitation wavelengths on the luminescent properties of the phosphor i.e. under near-ultraviolet (nUV) and visible excitations was investigated. The emission peaks of $Ce^{4+}$, $Eu^{3+}$, $Tb^{3+}$ co-doped $Ca_3Si_3O_8F_2$ phosphor lays at 480(blue band), 550(green band) and 611nm (red band) under 380nm excitation wavelength, attributed to the $Ce^{4+}$ ion, $Tb^{3+}$ ion and $Eu^{3+}$ ions respectively. The results reveal that the phosphor emits white light upon nUV (380nm) / visible (465nm) illumination, and a red light upon 395nm / 535nm illumination. RE ions doped $Ca_3Si_3O_8F_2$ is a promising white light phosphor for LEDs. The emission colours can be seen using Commission international de l'eclairage (CIE) co-ordinates. A single host phosphor emitting different colours under different excitations indicates that it is a potential phosphor having applications in many fields.

Applying the basic knowledge about regulation of pigmentation towards development of strategies for cutaneous hypopigmentation

  • Abdel-Malek, Zalfa A.
    • 대한화장품학회지
    • /
    • 제28권3호
    • /
    • pp.7-39
    • /
    • 2002
  • 인체피부의 색소침착에 있어서 다양한 차이는 주로 표피의 멜라닌생성 세포에 의한 멜라닌 합성 비율, 합성된 eumelanin과 pheomelanin의 상대적인 양과 melanocyte에서 keratinocyte로 melanosomes의 이동 속도와 그 방법에서 기인된다. 색소침착은 유전적, 환경적으로 조절되어지는 복합적 특성이다. 많은 관심이 집중되었던 하나의 유전자인 melanocortin 1 receptor 유전자가 있다. 인간집단에서 이 유전자의 다앙한 polymorphism은 색소침착의 다양성에 있어서 중요하다. 자외선(UV)에 대한 노출은 다양한 성장 요인, cytokines과 호르몬의 합성이 증가되고, 표피에서 그들 수용체들의 환경적응등이 나타난다. 색소침착 조절에 관한 정보는 과다색소 침착된 피부손상의 임상치료를 위한 전략들에서 이끌어 냈다. 주된 3개의 전략은 다음과 같다. 1) melanin 합성경로를 방해하는 화합물의 사용 2) eumelanin 합성을 조절하는 호르몬의 구조에서 기인된 peptides 또는 peptide-mimetics개발 3) melanocytes에서 keratinocytes로의 melanosome 이동을 감소시키는 물질의 개발. 이 모든 3가지의 전략은 각각 전체 멜라닌 합성, eumelanin 생성 또는 피부의 멜라닌 단위를 억제시킴으로 미백작용을 유도시킬 것으로 기대되어 진다.

노화와 피부노화에 대한 고찰 (Aging and Skin Aging)

  • 남혜정;김윤범
    • 한방안이비인후피부과학회지
    • /
    • 제17권1호
    • /
    • pp.16-33
    • /
    • 2004
  • In Oriental medicine, aging is just a natural process like change of seasons. Ancient Oriental people accepted it as a natural thing to be growing older and to die at last. The science of aging has advanced dramatically. In the last 2 decades, advances in genetics and molecular biology have led to extraordinary new understandings in how cells age, how apoptosis programs cells to die, and how neuroendocrinology plays a role in the lifespan of organisms. Today, the matter of primary concern about aging is a cellular and mitochondrial damage of human body induced by reactive oxygen species(ROS). The skin aging can be divided into two areas, intrinsic(chronologic)-aging and photo-aging. There are lots of photo damage about skin aging. The skin is increasingly exposed to ultraviolet(UV) irradiation in life. Therefore, the risk of photo-oxidative damage of the skin induced by reactive oxygen species(ROS) has increased substantially. Nowadays, many people believe that they can stop or at least delay the process of aging. There are lots of treatments that promise to slow the process of aging and the associated ailments. Many of these treatments, for example, exercise, Vit E, Vit C therapy, hormone therapy, restrict diet, are gradually being subjected to clinical trials. But in spite of all efforts, researches and investigations, there is no single method or treatment which is revealed to be truly effective for delaying progress of aging. Every methods insisted on effect for delaying aging process, has its dark side. All we can do is just keeping ourself healthy until the time of death.

  • PDF

비이온성 고분자의 Iodine 착물형성에 대한 계면활성제의 영향 (Influence of Surfactant on the Iodine Complex Formation of Some Non-ionic Polymers)

  • 안범수
    • 한국응용과학기술학회지
    • /
    • 제35권4호
    • /
    • pp.1031-1037
    • /
    • 2018
  • 수용성 비이온고분자인 Polyvinylalcohol (PVA), Polyvinylpyrrolidone (PVP), Hydroxypropyl cellusoe (HPC)와 iodine과의 착물 형성에 대한 계면활성제의 영향을 알아보기 위해 Sodiumdodecylsulfate을 포함하는 수용액에서 이들 사이의 반응을 수행하였다. PVP와 HPC에서 tri-iodide band의 적색 이동에 의하여 착물이 만들어졌다는 것을 알게되었고, PVA-iodine 착물에서는 500 nm 부근에서 고유의 특색있는 띠를 나타내었다. SDS 계면활성제의 존재는 PVA-iodine 착물의 파괴를 가져왔고, 고유의 푸른색도 사라지게 만들었다. 그러나 SDS 단량체는 PVP, HPC와 iodine의 착물 형성을 도와주는 경향을 나타내었다. 고분자 용액에서 겔이 만들어지는 것을 방해하는 n-propanol은 고분자-iodine 착물이 형성되는 것을 도와주었다. SDS가 있을 때와 없을 경우의 영향을 알아보기 위해 순수한 HPC와 HPC-iodine 착물을 만들고 이들의 성질을 조사하였다.

Application of Light-emitting-diodes to Annular-type Photocatalytic Reactor for Removal of Indoor-level Benzene and Toluene

  • Jo, Wan-Kuen;Kang, Hyun-Jung;Kim, Kun-Hwan
    • 한국환경과학회지
    • /
    • 제21권5호
    • /
    • pp.563-572
    • /
    • 2012
  • Unlike water applications, the photocatalytic technique utilizing light-emitting-diodes as an alternative light source to conventional lamp has rarely been applied for low-level indoor air purification. Accordingly, this study investigated the applicability of UV-LED to annular-type photocatalytic reactor for removal of indoor-level benzene and toluene at a low concentration range associated with indoor air quality issues. The characteristics of photocatalyst was determined using an X-ray diffraction meter and a scanning electron microscope. The photocatalyst baked at $350^{\circ}C$ exhibited the highest photocatalytic degradation efficiencies(PDEs) for both benzene and toluene, and the photocatalysts baked at three higher temperatures(450, 550, and $650^{\circ}C$) did similar PDEs for these compounds. The average PDEs over a 3-h period were 81% for benzene and close to 100% for toluene regarding the photocatalyst baked at $350^{\circ}C$, whereas they were 61 and 74% for benzene and toluene, respectively, regarding the photocatalyst baked at $650^{\circ}C$. As the light intensity increased from 2.4 to 3.5 MW $cm^{-1}$, the average PDE increased from 36 to 81% and from 44% to close to 100% for benzene and toluene, respectively. In addition, as the flow rate increased from 0.1 to 0.5 L $min^{-1}$, the average PDE decreased from 81% to close to zero and from close to 100% to 7% for benzene and toluene, respectively. It was found that the annular-type photocatalytic reactor inner-inserted with UV-LEDs can effectively be applied for the decomposition of low-level benzene and toluene under the operational conditions used in this study.

Photocatalytic Degradation of Methylene Blue by ACF/TiO2 and ACF/ZnO Composites under UV Light

  • Zhang, Kan;Oh, Won-Chun
    • 한국재료학회지
    • /
    • 제20권1호
    • /
    • pp.31-36
    • /
    • 2010
  • Methylene blue (MB) was degraded by $TiO_2$ and ZnO deposited on an activated carbon fiber (ACF) surface under UV light. The ACF/$TiO_2$ and ACF/ZnO composites were characterized by BET, SEM, XRD, and EDX. The BET surface area was related to the adsorption capacity for composites. The SEM results showed that titanium dioxide and zinc oxide are distributed on the ACF surface. The XRD results showed that the ACF/$TiO_2$ and ACF/ZnO composites contained a unique anatase structure for $TiO_2$ and a typical hexagonal phase for ZnO respectively. These EDX spectra showed the presence of peaks of Ti element on ACF/$TiO_2$ composite and peaks of Zn element on the ACF/ZnO composite. The blank experiments for either illuminating the MB solution or the suspension containing ACF/$TiO_2$ or ACF/ZnO in the dark showed that both illumination and the catalyst were necessary for the mineralization of organic dye. Additionally, the ACF/$TiO_2$ composites proved to be efficient photocatalysts due to degradation of MB at higher reaction rates. The addition of an oxidant $([NH_4]_2S_2O_8)$ led to an increase of the degradation rate of MB for ACF/$TiO_2$ and ACF/ZnO composites.

Luminescence Properties of Ba3Si6O12N2:Eu2+ Green Phosphor

  • Luong, Van Duong;Doan, Dinh Phuong;Lee, Hong-Ro
    • 한국표면공학회지
    • /
    • 제48권5호
    • /
    • pp.211-217
    • /
    • 2015
  • To fabricate white LED having a high color rendering index value, red color phosphor mixed with the green color phosphor together in the blue chip, namely the blue chips with RG phosphors packaging is most favorable for high power white LEDs. In our previous papers, we reported on successful syntheses of $Sr_{2-}$ $Si_5N_8:Eu^{2+}$ and $CaAlSiN_3$ phosphors for red phosphor. In this work, for high power green phosphor, greenemitting ternary nitride $Ba_3Si_6O_{12}N_2:Eu^{2+}$ phosphor was synthesized in a high frequency induction furnace under $N_2$ gas atmosphere at temperatures up to $1400^{\circ}C$ using $EuF_3$ as a raw material for $Eu^{2+}$ dopant. The effects of molar ratio of component and experimental conditions on luminescence property of prepared phosphors have been investigated. The structure and luminescence properties of prepared $Ba_3Si_6O_{12}N_2:Eu^{2+}$ phosphors were investigated by XRD and photoluminescence spectroscopy. The excitation spectra of $Ba_3Si_6O_{12}N_2:Eu^{2+}$ phosphors indicated broad excitation wavelength range of 250 - 500 nm, namely from UV to blue region with distinct enhanced emission spectrum peaking at ${\approx}530nm$.

ALD로 성장된 ZnO박막에 대한 질소이온 조사효과 (Study of the Nitrogen-Beam Irradiation Effects on ALD-ZnO Films)

  • 김희수
    • 한국진공학회지
    • /
    • 제18권5호
    • /
    • pp.384-389
    • /
    • 2009
  • ZnO는 육방정계결정구조의 물질로서 3.37 eV의 넓은 띠 간격과 60 meV의 큰 exciton 결합에너지에 따른 높은 효율의 자외선발광으로 짧은 파장의 빛 (녹, 청, 자외선)을 내는 LED (Light Emitting Diode) 분야에서 관심을 기울이고 있는 물질이다. LED제작을 위해서는 n형의 ZnO와 p형의 ZnO가 필요하지만 기본적으로 ZnO은 n형이므로 신뢰성 있는 p형 ZnO박막을 제작하기 위한 노력이 기울여지고 있다. 본 연구에서는 ALD (Atomic Layer Deposition)로 제작된 ZnO박막에 20 keV의 에너지를 갖는 질소이온을 $10^{13}{\sim}10^{15}ions/cm^2$로 조사한 후 Hall 효과 측정장치를 이용하여 질소이온 조사에 따른 전기적 특성변화를 조사하였다.