• Title/Summary/Keyword: UV A-LED

Search Result 246, Processing Time 0.026 seconds

A study on the curing characteristics of multi-concentrating UV-LED Curable Coating (다중 집광성 UV-LED 경화형 코팅의 경화특성에 관한 연구)

  • Jung, Chan-Gwon;Kim, Beom-Su;Park, Dae-Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.10
    • /
    • pp.339-345
    • /
    • 2018
  • We investigated the curing properties of cured coatings for a multi-focal UV-LED. The coatings are for LEDs that operate at multiple UV wavelengths, unlike conventional single-wavelength UV-LEDs. Using UV-LED light sources with wavelengths of 365, 395, 420, and 450 nm, we analyzed the optical characteristics such as the direction of light flux and light source. We also analyzed the curing characteristics at each UV-LED wavelength to optimize the LED for composite wavelengths. The curing performance state was predicted through computer simulation for when the multiple wavelengths of UV light sources are superimposed, and then actual LEDs were designed and fabricated. To improve the internal high-speed curing, a multi-spot module was fabricated, in which each LED is condensed, and multiple wavelengths are synthesized and condensed at the same position. The adhesive strength, surface hardness, and internal hardness of the curing agent were tested by varying the wavelength combination conditions. The surface hardening and internal hardening were compared and analyzed using a hardness tester and FT-IR analyzer. As a result, the characteristics of the surface and internal hardness were improved by a multi-spot method in which four wavelengths were overlapped in a UV-LED rather than a single wavelength.

Kinetic analysis of E. coli disinfection using UV-LED (LED 광원 UV에 의한 대장균(E. coli) 소독의 속도론 해석)

  • Kim, Kyeong-Rae;Chang, In-Soung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.35 no.6
    • /
    • pp.489-496
    • /
    • 2021
  • Water disinfection using UV-LED(Light emitting diode) has many advantages, such as smaller footprint and power consumption as well as relatively longer lifespan than those of conventional mercury-UV lamps. Moreover, UV-LED disinfection is considered an environmentally benign process due to its mercury-free nature. In this study, disinfection using an LED module emitting 275nm UV was carried out. 384 UV-LEDs were put into a cylinder tube with a capacity of 1.7 liters. The UV intensity of the UV-LED module was controlled from 1.7 to 8.4 mW/cm2. The disinfection efficiency for the model microorganism solutions(E. coli ) was monitored. As the UV intensity(I) and contact time(t) varied, inactivation of the microorganisms from 2 to 4-log-removals(i.e., 99 to 99.99% of disinfection efficiency) was achieved. Disinfection using UV-LED was followed to 1st order reaction and the reaction rate constant, k was determined. In addition, the relationship between UV intensity(I) and contact time(t) in order to obtain 99.99% of disinfection efficiency was modeled: I1.2·t= 460, which indicates that the product of UV intensity and contact time requiring 4-log-removals is always constant.

A study on the design development of a domestic disinfector using UV LED (UV LED를 이용한 가정용 소독기의 디자인 개발에 관한 연구)

  • Zhu, Wang;Sheng, Ying;Kang, Seung-Min;Jee, Moon-Hwan
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.29 no.6
    • /
    • pp.264-269
    • /
    • 2019
  • The design for household sterilizer applying UV LED was studied. Based on UV LED sterilization distance and time data, the concept of home disinfectioner design was presented. Using technologies such as computer aided design software, 3D printing and laser cutting, etc., three different UV LED operating method models were produced. The final design was derived by conducting an analysis of the product's merits and demerits on the three plans from the result of each model.

Growth and Contents of Anthocyanins and Ascorbic Acid in Lettuce as Affected by Supplemental UV-A LED Irradiation with Different Light Quality and Photoperiod (상이한 광질 및 광주기 하에서 UV-A LED 부가 조사가 상추의 생장, 안토시아닌 및 아스코르빈산 함량에 미치는 영향)

  • Kim, Yong Hyeon;Lee, Jae Su
    • Horticultural Science & Technology
    • /
    • v.34 no.4
    • /
    • pp.596-606
    • /
    • 2016
  • The growth and contents of anthocyanins and ascorbic acid in lettuce(Lactuca sativa L., 'Jeokchima') as affected by supplemental UV-A LED irradiation under different light quality and photoperiod conditions were analyzed in this study. Five light qualities, namely B (blue LED), R (red LED), BUV (blue LED+UV-A LED), RUV (red LED+UV-A LED) and Control (white fluorescent lamps) with photoperiods of 12/12 hours (day/night), 16/8 hours, or 20/4 hours were provided to investigate the effects of light quality and photoperiod on the growth and accumulation of anthocyanins and ascorbic acid in lettuce leaves. As measured 28 days after transplanting, the number of leaves, leaf length, leaf width, leaf area, shoot fresh weight and dry weight of lettuce were significantly affected by light quality and photoperiod. The number of leaves, leaf length, leaf width, leaf area, shoot fresh weight and dry weight of lettuce grown under R treatment increased with increasing light period. By contrast, leaf development was inhibited, but chlorophyll content increased, under B treatment. Supplemental UV-A irradiation significantly decreased leaf length, leaf width, leaf area and shoot fresh weight. Anthocyanins in lettuce increased significantly with decreasing dark period under B treatment. A synergistic effect of supplemental UV-A LED irradiation on anthocyanins accumulation was found for lettuce leaves grown under R treatment but not B treatment. Ascorbic acid in lettuce was greatly affected by photoperiod. Ascorbic acid content at BUV and RUV treatments increased by 20-30% compared to without UV-A LED irradiation. From these results, it was concluded that growth and contents of anthocyanins and ascorbic acid in lettuce are significantly affected by supplemental UV-A LED irradiation. The results obtained in this study will be informative for efforts to improve the nutritional value of leafy vegetables grown in plant factories.

Implementation of Electrical and Optical characteristics based on new packaging in UV LED (UV LED의 광효율 및 방열성능 향상을 위한 new packaging 특성 연구)

  • Kim, Byoung Chol;Park, Byeong Seon;Kim, Hyeong-Jin;Kim, Yong-Kab
    • Smart Media Journal
    • /
    • v.11 no.9
    • /
    • pp.21-29
    • /
    • 2022
  • Ultra Violet(UV) is gradually being replaced with LED instead of general UV lamps. However, the light efficiency of UV LED is still lower than that of the general lamp, and the light efficiency is also low. Due to the current environment and technical problems of UV lamps, the LED replacements are gradually being made. In this study, a new package design and analysis were performed to increase the lifetime and performance of UV LEDs. A new packaging for UV LED were designed and implemented. The new packaging for UV LED was constructed to improve light efficiency. And the electrical and optical characteristics were analyzed respectively. To improve the optical efficiency in UV LED package, the Al has been used based on high reflectivity and applying the optimal lens focusing. Compared to the existing silver Ag, the light efficiency was improved by about 30% or more, and it was confirmed that the light output degradation characteristic was improved by about 10% in the newly applied optical device chip.

Sterilization Analysis of Harmful Microbes in LED Plant Factory using UV LED (UV LED를 이용한 LED식물공장 유해미생물 살균 분석)

  • Jang, Jun-Chul;Her, In-Sung;Lee, Se-Il;Yu, Young-Moon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.6
    • /
    • pp.15-20
    • /
    • 2014
  • Recently, LED (Light Emitting Diode) application research is studying by using a specific wavelength. LED plant factory produced a lot of green plants in a closed spaces, so it should be taken to guard against harmful microbes. Until today, a lot of studies for green plant production in plant factory is proceed but there were no study on harmful microbes in plant factory. Thus, the analysis on sterilization for harmful microbes in plant factory were experimented using UV (Ultra Violet) LED with 282nm of wavelength. As a results on sterilization of three harmful microbes, 50% of sterilization efficiency was achieved after 2.5 hours, 97% was achieved after 12 hours of UV LED irradiation, respectively.

Study of an Optical Approach to Ultraviolet Irradiance for Space Sterilization Using a UV LED Light Source (UV LED 광원을 이용한 공간 살균을 위한 자외선 조사량 밀도의 광학적 연구)

  • Jong-Tae Kim
    • Korean Journal of Optics and Photonics
    • /
    • v.35 no.5
    • /
    • pp.235-240
    • /
    • 2024
  • Since the coronavirus pandemic, research and application of space sterilization effects using UV light sources have been rapidly increasing. In this paper, the space-sterilization effect of UV LED light sources that can be built into indoor environmental systems or lighting devices is quantitatively analyzed through an illumination optical approach. Through this, it is possible to establish a foundation for optimizing the sterilization effect in indoor spaces in the 275±5 nm wavelength range, which is known to have excellent space-sterilization power.

The UV LED Bar Optimal Design with Human Detection and Control Function (인체 감지 제어 기능을 갖는 UV LED Bar의 최적 설계)

  • Kim, Chang-Sun;Lee, Jae-Hak;Goh, Young-Jin
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.12 no.6
    • /
    • pp.1219-1226
    • /
    • 2017
  • In this paper, it is performed the optimal design of the UV LED bar which can be used variously. The UV LED Bar emits ultraviolet rays, so it is important to emit ultraviolet rays constantly for the purpose of use. In order to emit a certain amount of ultraviolet rays as ever, the ultraviolet ray emission should be driven by a constant current source within the operable input voltage range. And also the heat dissipation is particularly important because of the long ultraviolet emission retention time due to the UV utilization characteristics. In addition, since human body protection is essential, the algorithm is configured to operate according to human body detection using distance sensor and Bluetooth. Three 365nm UV LEDs were used in series to emit ultraviolet UVA, operating at the constant current of 500mA with an efficiency of 87.5% and a power consumption of 6.006W. The ultraviolet radiation dose was measured at $5.35mW/cm^2$ at the distance of 10 cm when measured by the Lutron ultraviolet measuring instruments.

Design of LED Lamp Circuits for UV Gel Nail (UV 젤 네일을 위한 LED 램프 회로 설계)

  • Kim, Phil Jung
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.10
    • /
    • pp.133-137
    • /
    • 2016
  • Use of UV gel for nail management have been increasing gradually. In order to develop an UV lamp necessary to UV gel, in this study, we was designed circuits of the UV-LED lamp. Power supply part that supplies constant power to the several UV-LEDs, was designed the circuit with the method of DC-DC converter. Taking into account the direction of the thumb nail and the position of the little finger nail, it was placed UV-LEDs. Input power of the power supply part was used as a battery voltage of 3.8[V]. The output voltage of the power supply part was appeared in approximately 3.1[V]. And in order to examine the state of change of the output voltage according to the amount of current consumption of UV-LEDs, after inserting of load resister, the output voltage was more than about 3.0[V] in the simulation results of the power supply part while changing the resistance value.

Inhibition Effect of Bacillus subtilis on 365 nm UV-LED Irradiation According to Packaging Materials (포장재 조건에 따른 365 nm UV-LED 조사의 Bacillus subtilis 생육 억제 효과)

  • Lee, Da-Hye;Jeong, So-Mi;Xu, Xiaotong;Kim, Koth-Bong-Woo-Ri;Ahn, Dong-Hyun
    • Microbiology and Biotechnology Letters
    • /
    • v.47 no.3
    • /
    • pp.332-336
    • /
    • 2019
  • The use of ultraviolet (UV) spectroscopy for foods is known to have a microbial inhibitory effect. UV-A having a longer wavelength than UV-C can be used for continuous or intermittent UV irradiation of food stored in containers or packages. Because UV-LED can be used effectively at a low price, this study reported the effect of UV-A 365 nm-LED on inhibiting Bacillus subtilis in accordance with the packaging conditions employed in daily use. The packaging materials were linear low-density polyethylene (LLD-PE), nylon/low density polyethylene (LDPE), polystyrene, and glass. When all packaging materials were treated with 365 nm UV-LED, B. subtilis was observed to remain inactive for 30-60 min. Further, compared with the control (-log 5), the survival rate of B. subtilis was -log 2.0-2.5 for nylon/LDPE and -log 2.58-3.61 for LLD-PE. These packaging materials showed an excellent inhibitory effect regardless of their thickness. Typically, a decrease in the viable cell count of more than 3 log indicates a 99.9% bactericidal effect. These results suggest that 365 nm UV-LED permeated the packaging material and inhibited bacterial growth.