• Title/Summary/Keyword: UV/chlorine

Search Result 56, Processing Time 0.023 seconds

Comparison of Phenol Removal between Electrochemical Reaction and Plasma Reaction

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Environmental Science International
    • /
    • v.25 no.7
    • /
    • pp.905-916
    • /
    • 2016
  • The characteristics of phenol removal and $UV_{254}$ matters variance were investigated and compared by the variation of operating factors (NaCl concentration, air flow rate, initial phenol concentration) in electrochemical reaction (ER) and dielectric barrier discharge plasma reaction (DBDPR), respectively. The phenol removal rate was shown as $1^{st}$ order both in ER and DBDPR. Also, the absorbance of $UV_{254}$ matters which means aromatic intermediates was analyzed to investigate the complete phenol degradation process. In ER, the phenol degradation and aromatic intermediates production rates increased by the increase of NaCl concentration. However, in DBDPR, the variation of NaCl concentration had no effect on the degradation of phenol and $UV_{254}$ matters. Air flow rate had a little effect on the removal of phenol and the variation of $UV_{254}$ matters in ER. The phenol removal rate in ER was a little higher than that in DBDPR. The produced $H_2O_2$ and $O_3$ amounts in ER were 2 times and 10 times higher than those in DBDPR. The chlorine intermediates ($ClO_2$ and free chlorine) were produced in ER, however, they were not produced in DBDPR.

Effects of Aqueous Chlorine Dioxide and UV-C Irradiation on Decontamination and Growth of Microbes during Chilled Storage of Celery and Cherries (이산화염소수, Ultraviolet-C 또는 병합처리가 샐러리와 체리에서의 살균 및 냉장저장 중 미생물 성장에 미치는 효과)

  • Song, Hyeon-Jeong;Chun, Ho-Hyun;Jo, Wan-Sin;Song, Kyung-Bin
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.41 no.3
    • /
    • pp.402-407
    • /
    • 2012
  • The effects of a combined treatment of aqueous chlorine dioxide ($ClO_2$) and ultraviolet-C (UV-C) irradiation on microbial growth in celery and cherries were investigated. Celery and cherry samples were treated with 50 ppm $ClO_2$, UV-C at dose of 10 kJ/$m^2$, and a combination of $ClO_2$ and UV-C. The changes in the counts of Escherichia coli O157:H7 inoculated in the celery and cherries as well as those of total aerobic bacteria, yeast and molds in the celery and cherries were investigated after each treatment. After the combined treatment of aqueous $ClO_2$ and UV-C irradiation, the populations of E. coli O157:H7 in the inoculated celery and cherries were reduced by 2.8 and 3.0 log CFU/g, respectively, compared to those of the control. For the un-inoculated celery and cherries, the populations of total aerobic bacteria were reduced by 2.9 and 1.8 log CFU/g, respectively, compared to the control. In addition, the populations of yeast and molds were decreased by 1.8 and 1.2 log CFU/g, respectively. These results suggest that the combined treatment of 50 ppm $ClO_2$ and UV-C at a dose of 10 kJ/$m^2$ would be an effective technology for decontamination and improving the microbiological safety in celery and cherries during chilled storage.

Effect of Combined Treatment of Aqueous Chlorine Dioxide with Ultraviolet-C on the Quality of Red Chicory and Pak Choi during Storage (이산화염소수와 Ultraviolet-C 병합 처리에 따른 레드 치커리와 청경채의 저장 중 품질에 미치는 영향)

  • Kim, Hyun-Jin;Song, Hyeon-Jeong;Song, Kyung-Bin
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.40 no.2
    • /
    • pp.245-252
    • /
    • 2011
  • The combined effects of 10 kJ/$m^2$ ultraviolet-C (UV-C) with 50 ppm aqueous chlorine dioxide ($ClO_2$) on the qualities of red chicory and pak choi were examined. After the treatment, the samples were stored at $4{\pm}1^{\circ}C$ for 7 days. The combined treatment of $ClO_2$/UV-C reduced the initial populations of total aerobic bacteria in the red chicory and pak choi by 2.64 and 2.55 log CFU/g, respectively, compared to those of the control. Also, the populations of yeast and molds in the red chicory and pak choi by combined treatment were reduced by 2.41 and 2.00 log CFU/g, respectively. In addition, after 7 days of storage the total aerobic bacteria populations in the red chicory and pak choi were reduced to 3.71 and 3.93 log CFU/g, compared to 6.31 and 6.62 log CFU/g for the control, resulting in a significant decrease. Hunter L, a, and b values of red chicory and pak choi were not significantly different among the treatments. Non-thermal treatment caused a negligible change in sensory evaluation. These results suggest that the combined treatment of 50 ppm $ClO_2$ with 10 kJ/$m^2$ UV-C can be useful for maintaining the qualities of red chicory and pak choi.

The model on Formation of Trihalomethane in Purifying Process of Drinking Water (정수처리긍정에서 소독부산물인 트리할로메탄의 생성모델)

  • 이성식;성낙창;이종팔;박현석;정미은;이상준;윤태경
    • Journal of Environmental Science International
    • /
    • v.13 no.3
    • /
    • pp.297-300
    • /
    • 2004
  • We have been proposed model equation which is able to predict the trihalomethane producing concentration formation, that is one of byproduct, in the water treatment processes. In proposed model, the effects of trihalomethane factors like chlorine contact time, pH, temperature, TOC and UV-254 are considered. The concentration of the trihalomethane produced is proportion to the contact with chlorine, pH of water, temperature of water TOC and UV-254, respectively. This proposed model could be predicted the formed concentration of trihalomethanes by trihalomethane factors.

Changes of Tap Water from the Preparation of Green Tea Leaves (녹차엽 주입에 따른 수돗물의 수질 변화)

  • Kim Chang Mo;Park Hyeon;Chang Hyun Seong;Kim Hyun Suk
    • Journal of Environmental Health Sciences
    • /
    • v.32 no.1 s.88
    • /
    • pp.53-59
    • /
    • 2006
  • This study was carried out to investigate the physicochemical characteristics with the elapsed time of $1\~10$ minutes after adding green tea leaves in the tap water. The results are summarized as follows: 1. $UV_{254}$ measurement increased sharply in direct opposition to increasing conductivity slowly. It is expected that the water soluble organic matters were better extracted than minerals. 2. Residual chlorine decay coefficients evaluated by assuming first-order reaction was increased in proportion to adding weights of green tea leaves. 3. In DBP formation experiments, residual chlorine decreased when reaction time was elapsed. whereas DBPs such as HAAs and THMs increased with the passing of time. From these results, it was showed that residual chlorine decay was related with the formation of DBPs. Therefore, use of boiled tap water in preparation of green tea is suggested if the residual chlorine in the tap water is high.

Removal of PCBs in Aqueous Phase in Ultraviolet (UV), Ultrasonic (US), and UV/US Processes (자외선 및 초음파 공정에 의한 수용액 상의 PCBs 분해)

  • Lee, Dukyoung;Son, Younggyu
    • Journal of Soil and Groundwater Environment
    • /
    • v.26 no.4
    • /
    • pp.1-7
    • /
    • 2021
  • The removal of PCBs (Polychlorinated biphenyls) in aqueous phase was investigated in the ultraviolet (UV) process, ultrasonics (US) process and ultraviolet/ultrasonic (UV/US) process using PCB No.7 and Aroclor 1260. For PCB No.7 relatively high removal efficiency over 90% was obtained during 20 min in the UV process and UV/US process. On the other hand, lower removal efficiency of 50 - 70% was achieved for it consisted of individual congeners of PCBs containing 3~8 of chlorine atom. It was found that the dechlorination reaction (the photolytic cleavage of C-Cl bond) was considered as a main removal mechanism in the UV process while PCBs were removed by cavitation-induced radical reaction in the US process. No significant dechlorination occurred in the US process. Consequently, it was suggested that the UV process or UV/US process was applicable for the removal of PCBs in aqueous phase in terms of the removal efficiency and operation time. In addition, the application of saturating gas such as Ar and Air could be considered to control redox condition and enhance the severity of acoustic cavitation for the removal of PCBs.

The disinfection effect of UV-C and calcium hypochlorite to shrimp farm instruments contaminated with EHP (Enterocytozoon hepatopenaei) (EHP (Enterocytozoon hepatopenaei)에 오염된 사육기구에 대한 UV-C와 차아염소산칼슘의 소독 효과)

  • Ji Min Ryu;Eul Bit Noh;Bo Seong Kim
    • Journal of fish pathology
    • /
    • v.37 no.1
    • /
    • pp.139-145
    • /
    • 2024
  • In this study, nylon mash and silicone tube mainly used as shrimp farm equipment were contaminated with Enterocytozoon hepatopenaei (EHP) which is the cause of Hepatopancreatic microsporidiosis (HPM), and were treated with calcium hypochlorite or UV-C disinfection methods for EHP eradication. As a result, similar with the control group (not disinfected), EHP was detected on the nested PCR until the 10 days in the UV-C single treated group. On the other hand, EHP was not detected from 7 days in calcium hypochlorite single treated group (total concentration 200 ppm as available chlorine), and combination of calcium hypochlorite and UV-C treated group revealed no detection of EHP from 3 days. It is appropriate that treated with UV-C and calcium hypochlorite for 3 days or single treated with calcium hypochlorite for 7 days to eradicate EHP on contaminated instrument used in shrimp farms. In contrast, disinfection effect of only using UV-C is very low.

Electrogeneration of Hypochlorite Ions using a Dimensionally Stable Anode-Type (Ti/PtPd(10%)Ox) Electrode

  • Teresa Zayas;Miriam Vega;Guillermo Soriano-Moro;Anabella Handal;Miguel Morales;Leonardo Salgado
    • Journal of Electrochemical Science and Technology
    • /
    • v.15 no.2
    • /
    • pp.268-275
    • /
    • 2024
  • The study examined the electrogeneration of hypochlorite ions (ClO-) via electrolysis of aqueous NaCl solutions using a dimensionally stable anode-type (DSA-type) electrode based on platinum and palladium oxides supported on titanium mesh (Ti/PtPd(10%)Ox). The electrogenerated ClO- was quantified on the basis of the absorption band at 292 nm (Aλ = 292) of the UV-Vis spectrum. The effect of initial pH, concentration of NaCl, cell potential difference and electrolysis time were investigated in this study. The results showed that the electrolysis of aqueous NaCl solutions increases the solution pH up to high values (≥ 8.0) that favor the formation of ClO- over chlorine or hypochlorous acid. The hypochlorite concentration increases significantly at pH values > 7.0 and shows a linear trend with increasing NaCl concentration and with increasing cell potential difference. When the cell potential and NaCl concentration are held constant, the maximum hypochlorite value during electrolysis depends on both the cell potential and NaCl concentration. The Ti/PtPd(10%)Ox anode favors the production of hypochlorite ions, making this anode a promising material for use in electrochemical oxidation of wastewater via an indirect mechanism.

Chlorination of Phenyl Derivatives : Chlorination of ethyl -${\alpha},{\beta}-dichloro-{\beta}$-phenyl propionate under gamma ray irradiation (芳香族 誘導體의 염素化反應 Ethyl-${\alpha},{\beta}-dichloro-{\beta}$-phenyl propionate의 gamma 線 鹽素化反應)

  • Kim, You-Sun;Kim, Ki-Soo
    • Journal of the Korean Chemical Society
    • /
    • v.12 no.2
    • /
    • pp.55-60
    • /
    • 1968
  • Chlorination of aromatic derivatives under UV light and ${\gamma}$-ray irradiation was studied. Ethyl ${\alpha} ,{\beta} -dichloro-{\beta}$-phenyl propionate gave the p-chlorophenyl derivatives when chlorination was done under UV light. The same type of the product was obtained in the reaction where the mole ratio of the ester and chlorine was 1 to 2 and the chlorination was done under ${\gamma}$-ray irradiation. When the mole ratio of the ester and chlorine was 1 to 8, the chlorination reaction under ${\gamma}$-ray irradiation gave a poly-chlorinated derivatives which was identified as a side chain chlorinated p-chlorophenyl derivatives. Ethyl ${\alpha} ,{\beta} -dichloro-{\beta}$-(p-chlorophenyl) propionate gave the same type of the side chain chlorinated p-chloro derivatives by the chlorination under ${\gamma}$-ray irradiation, whereas ethyl ${\alpha} ,{\beta} -dichloro-{\beta}$-(o-chlorophenyl) derivatives gave o,p-dichlorophenyl derivatives. The identifications of the products were based on a radio thin layer chromatography and activation analysis of chlorine contents of product. The chlorination reaction was discussed in regards to the effect of phenyl substituents to the formation of reaction product and the procedures were described.

  • PDF

Effect of Chlorine Dioxide Gas Application to Egg Surface: Microbial Reduction Effect, Quality of Eggs, and Hatchability

  • Chung, Hansung;Kim, Hyobi;Myeong, Donghoon;Kim, Seongjoon;Choe, Nong-Hoon
    • Food Science of Animal Resources
    • /
    • v.38 no.3
    • /
    • pp.487-497
    • /
    • 2018
  • Controlling of microorganisms in the industrial process is important for production and distribution of hatching and table eggs. In the previous study, we reported that chlorine dioxide ($ClO_2$) gas of a proper concentration and humidity can significantly reduce the load of Salmonella spp. on eggshells. In this study, we compared microbial reduction efficacy on egg's surface using hatching eggs and table eggs, internal quality of table eggs, and hatchability after both the conventional method (washing and UV expose, fumigation with formalin) and $ClO_2$ gas disinfection. Application of 40 ppm $ClO_2$ gas to the table and hatching eggs, respectively, reduced the aerobic plate count (APC) with no statistical difference compared with the conventional methods. Additionally, we didn't observed that any significant difference in albumin height, Haugh unit (HU), and yolk color, this result confirms that 40 ppm $ClO_2$ had no effect on the internal quality of the table eggs, when comparing with the UV treatment method. The hatchability of hatching eggs was not statistical different between formaldehyde fumigation and 80 ppm $ClO_2$ gas treatment, though the value was decreased at high concentration of 160 ppm $ClO_2$ gas. From these results, we recommend that $ClO_2$ gas can be used as a safe disinfectant to effectively control egg surface microorganisms without affecting egg quality.