DOI QR코드

DOI QR Code

The disinfection effect of UV-C and calcium hypochlorite to shrimp farm instruments contaminated with EHP (Enterocytozoon hepatopenaei)

EHP (Enterocytozoon hepatopenaei)에 오염된 사육기구에 대한 UV-C와 차아염소산칼슘의 소독 효과

  • Ji Min Ryu (Department of Aquatic Life Medicine, ONSE College, Kunsan National University) ;
  • Eul Bit Noh (Department of Aquatic Life Medicine, ONSE College, Kunsan National University) ;
  • Bo Seong Kim (Department of Aquatic Life Medicine, ONSE College, Kunsan National University)
  • 류지민 (국립군산대학교 수산생명의학과) ;
  • 노을빛 (국립군산대학교 수산생명의학과) ;
  • 김보성 (국립군산대학교 수산생명의학과)
  • Received : 2024.05.29
  • Accepted : 2024.06.10
  • Published : 2024.06.30

Abstract

In this study, nylon mash and silicone tube mainly used as shrimp farm equipment were contaminated with Enterocytozoon hepatopenaei (EHP) which is the cause of Hepatopancreatic microsporidiosis (HPM), and were treated with calcium hypochlorite or UV-C disinfection methods for EHP eradication. As a result, similar with the control group (not disinfected), EHP was detected on the nested PCR until the 10 days in the UV-C single treated group. On the other hand, EHP was not detected from 7 days in calcium hypochlorite single treated group (total concentration 200 ppm as available chlorine), and combination of calcium hypochlorite and UV-C treated group revealed no detection of EHP from 3 days. It is appropriate that treated with UV-C and calcium hypochlorite for 3 days or single treated with calcium hypochlorite for 7 days to eradicate EHP on contaminated instrument used in shrimp farms. In contrast, disinfection effect of only using UV-C is very low.

Keywords

Acknowledgement

이 논문은 국립군산대학교 수산과학연구소 학술연구비 지원에 의하여 연구되었음.

References

  1. Aldama-Cano, D.J., Sanguanrut, P., Munkongwongsiri, N., Ibarra-Gamez, J.C., Itsathitphaisarn, O., Vanichviriyakit, R., Flegel, T.W., Sritunyalucksana, K. and Thitamadee, S.: Bioassay for spore polar tube extrusion of shrimp Enterocytozoon hepatopenaei (EHP). Aquaculture, 490:156-161, 2018. https://doi.org/10.1016/j.aquaculture.2018.02.039
  2. Bratvold, D., Lu, J. and Browdy, C.L.: Disinfection, microbial community establishment and shrimp production in a prototype biosecure pond. Journal of the world aquaculture society, 30:422-432, 1999. https://doi.org/10.1111/j.1749-7345.1999.tb00990.x
  3. Cali, A., and Takvorian, P.M.: The Microsporidia: pathology in man and occurrence in nature. SE Asian J. Trop. Med. Public Health, 35(Suppl 1):58-64. 2004.
  4. Chaijarasphong, T., Munkongwongsiri, N., Stentiford, G.D., Aldama-Cano, D.J., Thansa, K., Flegel, T.W., Sritunyalucksana, K. and Itsathitphaisarn, O.: The shrimp microsporidian Enterocytozoon hepatopenaei (EHP): Biology, pathology, diagnostics and control. Journal of invertebrate pathology, 186:107458, 2021. https://doi.org/10.1016/j.jip.2020.107458
  5. Chang, P.S., Chen, L.J. and Wang, Y.C.: The effect of ultraviolet irradiation, heat, pH, ozone, salinity and chemical disinfectants on the infectivity of white spot syndrome baculovirus. Aquaculture, 166:1-17, 1998. https://doi.org/10.1016/S0044-8486(97)00238-X
  6. Delabbio, J.L., Johnson, G.R., Murphy, B.R., Hallerman, E., Woart, A. and McMullin, S.L.: Fish disease and biosecurity: attitudes, beliefs, and perceptions of managers and owners of commercial finfish recirculating facilities in the United States and Canada. Journal of Aquatic Animal Health, 17:153-159, 2005. https://doi.org/10.1577/H04-005.1
  7. Jang, G.I., Kim, S.M., Oh, Y.K., Lee, S.J., Hong, S.Y., Lee, H.E., Kwon, M.G. and Kim, B.S.: First report of Enterocytozoon hepatopenaei infection in giant freshwater prawn (Macrobrachium rosenbergii de Man) cultured in the Republic of Korea. Animals, 12:3149, 2022. https://doi.org/10.3390/ani12223149
  8. Jaroenlak, P., Sanguanrut, P., Williams, B.A., Stentiford, G.D., Flegel, T.W., Sritunyalucksana, K. and Itsathitphaisarn, O.: A nested PCR assay to avoid false positive detection of the microsporidian Enterocytozoon hepatopenaei (EHP) in environmental samples in shrimp farms. PloS one, 11:e0166320, 2016. https://doi.org/10.1371/journal.pone.0166320
  9. Jena, K., Pandey, J., Upadhya, A., Mishra, Y., Gupta, V., Sinha, A., Kumari, R., and Priya, A.: Calcium hypochlorite causes annihilation of bio-molecules of nosema spores purified Antheraea Mylitta. Int. J. Adv. Res, 5(4):1958-1965. 2017. https://doi.org/10.21474/IJAR01/4038
  10. Kasai, H., Yoshimizu, M. and Ezura, Y.: Disinfection of water for aquaculture. Fisheries science, 68:821-824, 2002. https://doi.org/10.2331/fishsci.68.sup1_821
  11. Keeling, P.J. and Fast, N.M.: Microsporidia: biology and evolution of highly reduced intracellular parasites. Annual Reviews in Microbiology, 56:93-116, 2002. https://doi.org/10.1146/annurev.micro.56.012302.160854
  12. Kim, B.S., Jang, G.I., Kim, S.M., Kim, Y.S., Jeon, Y.G., Oh, Y.K., Hwang, J.Y. and Kwon, M.G.: First report of Enterocytozoon hepatopenaei infection in Pacific whiteleg shrimp (Litopenaeus vannamei) cultured in Korea. Animals, 11:3150, 2021. https://doi.org/10.3390/ani11113150
  13. Kumar, T.S., Praveena, P.E., Sivaramakrishnan, T., Rajan, J.J.S., Makesh, M. and Jithendran, K.: Effect of Enterocytozoon hepatopenaei (EHP) infection on physiology, metabolism, immunity, and growth of Penaeus vannamei. Aquaculture, 553:738105, 2022. https://doi.org/10.1016/j.aquaculture.2022.738105
  14. Kwon, M.G., Kim, S.M., Shin, K.W., Cho, M.Y., Hwang, S.D., Swo, J.S., Hwang, J.Y., and Jee, B.Y.: Epidemiological survey of infectious myonecrosis in farmed whiteleg shrimps (Litopenaeus vannamei) in Korea. The Journal of the Korean Society for Fisheries and Marine Sciences Education , 31(1):94-99, 2019. http://doi.org/10.13000/JFMSE.2019.2.31.1.94
  15. Leblanc, B.D. and Overstreet, R.M.: Efficacy of calcium hypochlorite as a disinfectant against the shrimp virus Baculovirus penaei. Journal of Aquatic Animal Health, 3:141-145, 1991. https://doi.org/10.1577/1548-8667(1991)003<0141:EOCHAA>2.3.CO;2
  16. Leal, J.F., Neves, M.G.P., Santos, E.B., and Esteves, V.I.: Use of formalin in intensive aquaculture: properties, application and effects on fish and water quality. Reviews in Aquaculture, 10(2):281-295, 2018. https://doi.org/10.1111/raq.12160
  17. Li, H., Cui, Z., Cui, H., Bai, Y., Yin, Z. and Qu, K.: A review of influencing factors on a recirculating aquaculture system: Environmental conditions, feeding strategies, and disinfection methods. Journal of the world aquaculture society, 54:566-602, 2023. https://doi.org/10.1111/jwas.12976
  18. Li, X., Palmer, R., Trout, J., and Fayer, R.: Infectivity of microsporidia spores stored in water at environmental temperatures. Journal of Parasitology, 89(1):185-188, 2003. https://doi.org/10.1645/0022-3395(2003)089[0185:IOMSSI]2.0.CO;2
  19. Lightner, D.V.: Biosecurity in shrimp farming: Pathogen exclusion through use of SPF stock and routine surveillance. Journal of the world aquaculture society, 36:229-248, 2005. https://doi.org/10.1111/j.1749-7345.2005.tb00328.x
  20. Limsuwan, C., Chuchird, N. and Laisutisan, K.: Efficacy of calcium hypochlorite on the prevalence of microsporidiosis (Thelohania) in pond-reared Litopenaeus vannamei. Kasetsart J Nat Sci, 42:282-288, 2008. https://li01.tci-thaijo.org/index.php/anres/article/view/244445
  21. Lotz, J.: Viruses, biosecurity and specific pathogen-free stocks in shrimp aquaculture. World journal of microbiology and biotechnology, 13:405-413, 1997. https://doi.org/10.1023/A:1018572132529
  22. Mascarenhas dos Santos, A.C., Julian, A.T., and Pombert, J.F.: The Rad9-Rad1-Hus1 DNA Repair clamp is found in microsporidia. Genome Biology and Evolution, 14(4), evac053. 2022. https://doi.org/10.1093/gbe/evac053
  23. Mohammed, A.N.: Resistance of bacterial pathogens to calcium hypochlorite disinfectant and evaluation of the usability of treated filter paper impregnated with nanosilver composite for drinking water purification. Journal of Global Antimicrobial Resistance, 16:28-35, 2019. https://doi.org/10.1016/j.jgar.2018.09.002
  24. Park, J.H., Seok, S.H., Cho, S.A., Baek, M.W., Lee, H.Y., Kim, D.J., Kim, H.Y., Chang, S.O. and Park, J.H.: Safety and protective effect of a disinfectant (STEL water) for white spot syndrome viral infection in shrimp. Diseases of aquatic organisms, 60:253-257, 2004. https://doi.org/10.3354/dao060253
  25. Patil, P.K., Geetha, R., Ravisankar, T., Avunje, S., Solanki, H.G., Abraham, T.J., Vinoth, S.P., Jithendran, K.P., Alavandi, S.V. and Vijayan, K.K.: Economic loss due to diseases in Indian shrimp farming with special reference to Enterocytozoon hepatopenaei (EHP) and white spot syndrome virus (WSSV). Aquaculture, 533:736231, 2021. https://doi.org/10.1016/j.aquaculture.2020.736231
  26. Pattarayingsakul, W., Munkongwongsiri, N., Thitamadee, S., Sritunyalucksana, K. and Aldama-Cano, D.J.: Shrimp microsporidian EHP spores in culture water lose activity in 10 days or can be inactivated quickly with chlorine. Aquaculture, 548:737665, 2022. https://doi.org/10.1016/j.aquaculture.2021.737665
  27. Schuur, A.M.: Evaluation of biosecurity applications for intensive shrimp farming. Aquacultural Engineering, 28:3-20, 2003. https://doi.org/10.1016/S0144-8609(02)00053-5
  28. Subash, P., Uma, A., Ahilan, B. and Kannan, S.S.: In vivo and in silico investigations on the efficacy of albendazole against Enterocytozoon hepatopenaei (EHP) infecting Penaeus vannamei. Aquaculture, 575:739801, 2023. https://doi.org/10.1016/j.aquaculture.2023.739801
  29. Teitge, F., Peppler, C., Steinhagen, D. and Jung-Schroers, V.: Water disinfection by ozonation has advantages over UV irradiation in a brackish water recirculation aquaculture system for Pacific white shrimp (Litopenaeus vannamei). Journal of fish diseases, 43:259-1285, 2020. https://doi.org/10.1111/jfd.13238
  30. Venkobachar, C., Iyengar, L., and Rao, A.P.: Mechanism of disinfection: effect of chlorine on cell membrane functions. Water Research, 11(8):727-729. 1977.
  31. Wang, L., Li, H., Shi, W., Qiao, Y., Wang, P., Yu, Z., Zhao, R., Hu, R., Shen, H., and Cheng, J.: Whole-genome sequencing and comparative genomic analysis of a pathogenic Enterocytozoon hepatopenaei strain isolated from Litopenaeus vannamei. Aquaculture International, 31(1):523-546. 2023. https://doi.org/10.1007/s10499-022-00990-9
  32. Watanabe, K.I. and Yoshimizu, M.: Disinfection of equipments for aquaculture and fertilized eggs by ozonated seawater. Fish Pathology, 33:145-146, 1998. https://doi.org/10.3147/jsfp.33.145
  33. Weber, R., Deplazes, P., and Mathis, A.: Microsporidia. Manual of clinical microbiology, 2209-2219, 2015. https://doi.org/10.1128/9781555817381.ch128
  34. Williams, B.A., Dolgikh, V.V., and Sokolova, Y.Y.: Microsporidian biochemistry and physiology. Microsporidia: pathogens of opportunity, 245-260. 2014. https://doi.org/10.1002/9781118395264.ch9
  35. Wiredu Boakye, D., Jaroenlak, P., Prachumwat, A., Williams, T.A., Bateman, K.S., Itsathitphaisarn, O., Sritunyalucksana, K., Paszkiewicz, K.H., Moore, K. A., and Stentiford, G.D.: Decay of the glycolytic pathway and adaptation to intranuclear parasitism within Enterocytozoonidae microsporidia. Environmental Microbiology, 19(5):2077-2089. 2017. https://doi.org/10.1111/1462-2920.13734
  36. Yanong, R.P., and Erlacher-Reid, C.: Biosecurity in aquaculture, Part 1: An overview. Southern regional aquaculture center, 4707:1-16, 2012.
  37. Yuanlae, S., Prasartset, T., Reamtong, O., Munkongwongsiri, N., Panphloi, M., Preechakul, T., Suebsing, R., Thitamadee, S., Prachumwat, A. and Itsathitphaisarn, O.: Shrimp injection with dsRNA targeting the microsporidian EHP polar tube protein reduces internal and external parasite amplification. Scientific Reports, 14:4830, 2024. https://doi.org/10.1038/s41598-024-55400-2
  38. Zhang, Y., Miao, Z., Huang, X., Wang, X., Liu, J., and Wang, G.: Laser Tweezers Raman Spectroscopy (LTRS) to Detect Effects of Chlorine Dioxide on Individual Nosema bombycis Spores. Applied Spectroscopy, 73(7):774-780. 2019. https://doi.org/10.1177/0003702818817522
  39. 이영옥: 소독제제의 효과적 사용과 국내현황. 대한수의사회지, 20:528-537, 1984.