• Title/Summary/Keyword: UST

Search Result 387, Processing Time 0.022 seconds

Surface Energy of Graphene Transferred by Wet and Dry Transfer Methods (전사 방법에 따른 그래핀의 표면 에너지 변화)

  • Yoon, Min-Ah;Kim, Chan;Won, Sejeong;Jung, Hyun-June;Kim, Jae-Hyun;Kim, Kwang-Seop
    • Tribology and Lubricants
    • /
    • v.35 no.1
    • /
    • pp.9-15
    • /
    • 2019
  • Graphene is a fascinating material for fabricating flexible and transparent devices owing to its thickness and mechanical properties. To utilize graphene as a core material for devices, the transfer process of graphene is an inevitable step. The transfer process can be classified into wet and dry methods depending on the surrounding environment. The adhesion between graphene and a target substrate determines the success or failure of the transfer process. As the surface energy of graphene is an important parameter that provides adhesion, it is useful to estimate the surface energy to understand the mechanisms of the transfer process. However, the exact surface energy of graphene is still disputed because the wetting transparency of graphene depends on the polarity of the liquid and target substrate. Previously reported results use graphene transferred by the wet method. However, there are few reports on the surface energy of graphene transferred by the dry method. In this study, the surface energy of graphene transferred by the wet and dry methods is estimated. Wetting transparency occurs for certain combinations of liquids and substrates. For graphene on a polar substrate, the surface energy decreases by 25 and 35% for the wet and dry transfer methods, respectively. However, the surface energy of graphene on dispersive substrates decreases by ~10% regardless of the transfer method. In conclusion, the surface energy of graphene is $36{\sim}38mJ/m^2$, and differs depending on the transfer method and polarity of the substrate.

Microstructure-Strengthening Interrelationship of an Ultrasonically Treated Hypereutectic Al-Si (A390) Alloy

  • Kim, Soo-Bae;Cho, Young-Hee;Jung, Jae-Gil;Yoon, Woon-Ha;Lee, Young-Kook;Lee, Jung-Moo
    • Metals and materials international
    • /
    • v.24 no.6
    • /
    • pp.1376-1385
    • /
    • 2018
  • Ultrasonic melt treatment (UST) was applied to an A390 hypereutectic Al-Si alloy in a temperature range of $750-800^{\circ}C$ and its influence on the solidification structure and the consequent increase in strength was investigated. UST at such a high temperature, which is about $100^{\circ}C$ above the liquidus temperature, had little effect on the grain refinement but enhanced the homogeneity of the microstructure with the uniform distribution of constituent phases (e.g. primary Si, ${\alpha}-Al$ and intermetallics) significantly refined. With the microstructural homogeneity, quantitative analysis confirmed that UST was found to suppress the formation of Cu-bearing phases, i.e., $Q-Al_5Cu_2Mg_8Si_6$, $Al_2Cu$ phases that form in the final stage of solidification while notably increasing the average Cu contents in the matrix from 1.29 to 2.06 wt%. A tensile test exhibits an increase in the yield strength of the as-cast alloy from 185 to 208 MPa, which is mainly associated with the solute increment within the matrix. The important role of UST in the microstructure evolution during solidification is discussed and the mechanism covering the microstructure-strengthening interrelationship of the ultrasonically treated A390 alloy is proposed.

Optimal Design of RSOFC System Coupled with Waste Steam Using Ejector for Fuel Recirculation (연료 재순환 이젝터를 이용한 연료전지-폐기물 기반 가역 고체 산화물 연료전지의 최적 설계)

  • GIAP, VAN-TIEN;LEE, YOUNG DUK;KIM, YOUNG SANG;QUACH, THAI QUYEN;AHN, KOOK YOUNG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.30 no.4
    • /
    • pp.303-311
    • /
    • 2019
  • Reversible solid oxide fuel cell (RSOFC) has become a prospective device for energy storage and hydrogen production. Many studies have been conducted around the world focusing on system efficiency improvement and realization. The system should have not only high efficiency but also a certain level of simplicity for stable operation. External waste steam utilization was proved to remarkably increase the efficiency at solid oxide electrolysis system. In this study, RSOFC system coupled with waste steam was proposed and optimized in term of simplicity and efficiency. Ejector for fuel recirculation is selected due to its simple design and high stability. Three system configurations using ejector for fuel recirculation were investigated for performance of design condition. In parametric study, the system efficiencies at different current density were analyzed. The system configurations were simulated using validated lumped model in EBSILON(R) program. The system components, balance of plants, were designed to work in both electrolysis and fuel cell modes, and their off-design characteristics were taken into account. The base case calculation shows that, the system with suction pump results in slightly lower efficiency but stack can be operated more stable with same inlet pressure of fuel and air electrode.

A Study on Selective Transfer and Reflow Process of Micro-LED using Micro Stamp (마이크로 스탬프를 이용한 Micro-LED 개별 전사 및리플로우 공정에 관한 연구)

  • Han, Seung;Yoon, Min-Ah;Kim, Chan;Kim, Jae-Hyun;Kim, Kwang-Seop
    • Tribology and Lubricants
    • /
    • v.38 no.3
    • /
    • pp.93-100
    • /
    • 2022
  • Micro-light emitting diode (micro-LED) displays offer numerous advantages such as high brightness, fast response, and low power consumption. Hence, they are spotlighted as the next-generation display. However, defective LEDs may be created due to non-uniform contact loads or LED alignment errors. Therefore, a repair process involving the replacement of defective LEDs with favorable ones is necessitated. The general repair process involves the removal of defective micro-LEDs, interconnection material transfer, as well as new micro-LED transfer and bonding. However, micro-LEDs are difficult to repair since their size decreases to a few tens of micron in width and less than 10 ㎛ in thickness. The conventional nozzle-type dispenser for fluxes and the conventional vacuum chuck for LEDs are not applicable to the micro-LED repair process. In this study, transfer conditions are determined using a micro stamp for repairing micro-LEDs. Results show that the aging time should be set to within 60 min, based on measuring the aging time of the flux. Additionally, the micro-LEDs are subjected to a compression test, and the result shows that they should be transferred under 18.4 MPa. Finally, the I-V curves of micro-LEDs processed by the laser and hot plate reflows are measured to compare the electrical properties of the micro-LEDs based on the reflow methods. It was confirmed that the micro-LEDs processed by the laser reflow show similar electrical performance with that processed by the hot plate reflow. The results can provide guidance for the repair of micro-LEDs using micro stamps.

Appropriate Synchronization Time Allocation for Distributed Heterogeneous Parallel Computing Systems

  • Nidaw, Biruk Yirga;Oh, Myeong-Hoon;Kim, Young Woo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.11
    • /
    • pp.5446-5463
    • /
    • 2019
  • Parallel computing system components should be harmonized, and this harmonization is kept existent using synchronization time. Synchronization time affects the system in two ways. First, if we have too little synchronization time, some tasks face the problem of harmonization, as they need appropriate time to update and synchronize with the system. Second, if we allocate a large amount of time, stall system created. Random allocation of synchronization time for parallel systems slows down not only the booting time of the system but also the execution time of each application involved in the system. This paper presents a simulator used to test and allocate appropriate synchronization time for distributed and parallel heterogeneous systems. The simulator creates the parallel and heterogeneous system to be evaluated, and lets the user vary the synchronization time to optimize the booting time. NS3-cGEM5 simulator in this paper is formed by HLA-RTI federation integration of the two independent architecture and network simulators - NS3 and cGEM5. Therefore, nodes created on these simulators need synchronizations for harmonized system performance. We tested and allocated the appropriate synchronization time for our sample parallel system composed of one x86 server and three ARM clients.

Class E Power Amplifiers using High-Q Inductors for Loosely Coupled Wireless Power Transfer System

  • Yang, Jong-Ryul;Kim, Jinwook;Park, Young-Jin
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.569-575
    • /
    • 2014
  • A highly efficient class E power amplifier is demonstrated for application to wireless power transfer system. The amplifier is designed with an L-type matching at the output for harmonic rejection and output matching. The power loss and the effect of each component in the amplifier with the matching circuit are analyzed with the current ratio transmitted to the output load. Inductors with a quality factor of more than 120 are used in a dc feed and the matching circuit to improve transmission efficiency. The single-ended amplifier with 20 V supply voltage shows 7.7 W output power and 90.8% power added efficiency at 6.78 MHz. The wireless power transfer (WPT) system with the amplifier shows 5.4 W transmitted power and 82.3% overall efficiency. The analysis and measurements show that high-Q inductors are required for the amplifier design to realize highly efficient WPT system.

Process Study of Direct Laser Lithographic System for Fabricating Diffractive Optical Elements with Various Patterns (다중 패턴의 회절광학소자 제작을 위한 레이저 직접 노광시스템의 공정 연구)

  • Kim, Young-Gwang;Rhee, Hyug-Gyo;Ghim, Young-Sik;Lee, Yun-Woo
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.2
    • /
    • pp.58-62
    • /
    • 2019
  • Diffractive Optical Elements(DOEs) diffracts incident light using the diffraction phenomenon of light to generate a desired diffraction image. In recent years, the use of diffraction optics, which can replace existing refractive optical elements with flat plates, has been increased by implementing various optical functions that could not be implemented in refractive optical devices and by becoming miniaturized and compacted optical elements. Direct laser lithography is typically used to effectively fabrication such a diffractive optical element in a large area with a low process cost. In this study, the process conditions for fabricating patterns of diffractive optical elements in various shapes were found using direct laser lithographic system, and optical performance evaluation was performed through fabrication.

Design and Lithographic Fabrication of Elliptical Zone Plate Array with High Fill Factor

  • Anh, Nguyen Nu Hoang;Rhee, Hyug-Gyo;Ghim, Young-Sik
    • Current Optics and Photonics
    • /
    • v.5 no.1
    • /
    • pp.8-15
    • /
    • 2021
  • An elliptical zone plate (EZP) array is important in off-axis optical systems because it provides two advantages. First, the residual beam and the main source are not focused in the same direction and second, the light from the observation plane is not reflected back towards the beam source. However, the fill factor of the previous EZP array was about 76% which was a little low. Hence, this EZP array could not collect the maximum amount of illumination light, which affected the overall optical performance of the lens array. In this study, we propose a new EZP array design with a 97.5% fill factor used in off-axis imaging system for enhancement of brightness and contrast. Then, direct laser lithography was used to fabricate the high fill factor EZP array by moving the XY linear stage of the system in a zigzag motion. The imaging properties of the proposed EZP array were experimentally verified at the focal plane and compared with the previous model.

Sinapic Acid Attenuates the Neuroinflammatory Response by Targeting AKT and MAPK in LPS-Activated Microglial Models

  • Tianqi Huang;Dong Zhao;Sangbin Lee;Gyochang Keum;Hyun Ok Yang
    • Biomolecules & Therapeutics
    • /
    • v.31 no.3
    • /
    • pp.276-284
    • /
    • 2023
  • Sinapic acid (SA) is a phenolic acid that is widely distributed in fruits and vegetables, which has various bioactivities, such as antidiabetic, anticancer and anti-inflammatory functions. Over-activated microglial is involved in the development progress of neurodegenerative diseases, such as Parkinson's disease and Alzheimer's disease. The objective of this study was to investigate the effect of SA in microglia neuroinflammation models. Our results demonstrated that SA inhibited secretion of the nitric oxide (NO) and interleukin (IL)-6, reduced the expression of inducible nitric oxide synthase (iNOS) and enhanced the release of IL-10 in a dose-dependent manner. Besides, our further investigation revealed that SA attenuated the phosphorylation of AKT and MAPK cascades in LPS-induced microglia. Consistently, oral administration of SA in mouse regulated the production of inflammation-related cytokines and also suppressed the phosphorylation of MAPK cascades and AKT in the mouse cerebral cortex. These results suggested that SA may be a possible therapy candidate for anti-inflammatory activity by targeting the AKT/MAPK signaling pathway.

Patent Technology Analysis for Derivation of a Concept of Automated Concrete Pouring System (콘크리트 타설 작업 자동화 시스템 개념 도출을 위한 특허 기술 분석)

  • Jeon, Eun-Bi;Kim, Kyoon-Tai
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.11a
    • /
    • pp.175-176
    • /
    • 2020
  • As the concrete pouring work relies on manual work, there is a lot of room for automated equipment development. In this study, as a basic study on the development of an automated system for pouring concrete, the trend of patent applications by year, country and detailed technology was investigated. Related technologies were classified into screed automation, CPB automation, and concrete pouring integrated system to analyze patent application trends. As a result, since 1999, patent applications have been steadily in progress, repeating increases and decreases in Japan, Korea, the United States, and Europe. In addition, the growth stage of the market is in the early stages of maturity, and patent applications for related technologies are expected to continue. In the future, based on the patent application trend analyzed in this study, the development direction of the automated concrete pouring system will be reviewed and the redundancy of similar technologies will be reviewed.

  • PDF