• Title/Summary/Keyword: USRP/LTE

Search Result 8, Processing Time 0.02 seconds

Prototyping of CDMA based Two-Way MSAR by USRP/LTE (USRP/LTE를 이용한 CDMA기반 양방향 군탐색구조 시스템 시작품 제작)

  • Jeong, I.C.;Choi, S.H.;Lee, Sanguk;Ahn, Woo-Geun
    • Journal of Satellite, Information and Communications
    • /
    • v.11 no.4
    • /
    • pp.68-73
    • /
    • 2016
  • This paper describes the prototyping of CDMA bi - directional group search system using USRP and LTE. This paper describes the results of RF signal generation and transmission by implementing a spread spectrum signaling system, which is a new standard of COSPAS SARSAT, using a bi-directional search structure system using commercial LTE network and USRP.

Design and Implementation of LTE-TDD 2×2 MIMO Bidirectional RF Hybrid Beamforming System (LTE-TDD 2×2 MIMO 양방향 RF 하이브리드 빔포밍 시스템 설계 및 구현)

  • Lee, Kwang-Suk;Kim, Dong-Hyun;Oh, Hyuk-Jun
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.23 no.4
    • /
    • pp.23-31
    • /
    • 2018
  • This paper presented the implementation and design of the 2T-2R wireless HD video streaming systems over 1.7 GHz frequency band using 3GPP LTE-TDD standard on NI USRP RIO SDR platform. The baseband of the system used USRP RIO that are stored in Xilinx Kintex-7 chip to implement LTE-TDD transceiver modem, the signal that are transmitted from USRP RIO up or down converts to 1.7 GHz by using self-designed 1.7 GHz RF transceiver modules and it is finally communicated HD video data through self-designed 2x9 sub array antennas. It is that communication method between USRP RIO and Host PC use PCI express x4 to minimize delay of data to transmit and receive. The implemented system show high error vector magnitude performance above 32 dBc and to transmit and receive HD video in experiment environment anywhere. The proposed hybrid beam forming system could be used not only in the future 5G mobile communication systems under 6 GHz frequency band but also in the systems over 6 GHz frequency band like ones in mmWave frequency bands.

Design and Implementation of 5G mmWave LTE-TDD HD Video Streaming System for USRP RIO SDR (USRP RIO SDR을 이용한 5G 밀리미터파 LTE-TDD HD 비디오 스트리밍 시스템 설계 및 구현)

  • Gwag, Gyoung-Hun;Shin, Bong-Deug;Park, Dong-Wook;Eo, Yun-Seong;Oh, Hyuk-Jun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.5
    • /
    • pp.445-453
    • /
    • 2016
  • This paper presents the implementation and design of the 1T-1R wireless HD video streaming systems over 28 GHz mmWave frequency using 3GPP LTE-TDD standard on NI USRP RIO SDR platform. The baseband of the system uses USRP RIO that are stored in Xilinx Kintex-7 chip to implement LTE-TDD transceiver modem, the signal that are transceived from USRP RIO up or down converts to 28 GHz by using self-designed 28 GHz RF transceiver modules and it is finally communicated HD video data through self-designed $4{\times}8$ sub array antennas. It is that communication method between USRP RIO and Host PC use PCI express ${\times}4$ to minimize delay of data to transmit and receive. The implemented system show high error vector magnitude performance above 25.85 dBc and to transceive HD video in experiment environment anywhere.

Implementation of SDR Platform for LTE using GNU Radio and NDK of TI DSP (GNU Radio와 TI DSP의 NDK를 이용한 LTE SDR 플랫폼 구현)

  • Jin, Hwajong;Kim, Daejin;Choi, Seungwon
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.14 no.4
    • /
    • pp.93-99
    • /
    • 2018
  • This paper presents an implementation method using NDK (Network Developer's Kit) of GNU (GNU is Not Unix) Radio and Multicore DSP (Digital Signal Processor) to implement LTE (Long Term Evolution) SDR (Software Defined Radio) Platform. In order to satisfy 1.4MHz, 3MHz, 5MHz and 10MHz of the bandwidth supported by LTE, USRP (Universal Software Radio Peripheral) X series which is an RF (Radio Frequency) transceiver of Ettus Research was used. To control this, GNU Radio which is an open source software radio toolkit was used. We also used NDK from TI (Texas Instruments) DSP to transfer data between USRP and DSP. Experimental results show throughput results according to each bandwidth, thus confirming the feasibility of implementing LTE SDR Platform using GNU Radio and NDK of TI DSP.

Development of Search and Rescue System with Dynamic Model by RF Signal Based LTE (탐색구조 시스템에서의 RF 신호 기반 동역학 모델 적용 및 개발)

  • Jeong, I.C.;Kim, D.W.;Ahn, W.G.;Lee, S.
    • Journal of Satellite, Information and Communications
    • /
    • v.12 no.4
    • /
    • pp.120-124
    • /
    • 2017
  • This paper describes the product of search and rescue system with dynamic model. This spread spectrum system based new standard of COSPAS-SARSAT is results of RF signal generation and transmission. we will test performance evaluation which implement signal process adapting Dynamic model and we will adapt the CAF model using TDOA and FDOA relationship.

Implementation of LTE uplink System for SDR Platform using CUDA and UHD (CUDA와 UHD를 이용한 SDR 플랫폼 용 LTE 상향링크 시스템 구현)

  • Ahn, Chi Young;Kim, Yong;Choi, Seung Won
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.9 no.2
    • /
    • pp.81-87
    • /
    • 2013
  • In this paper, we present an implementation of Long Term Evolution (LTE) Uplink (UL) system on a Software Defined Radio (SDR) platform using a conventional Personal Computer (PC), which adopts Graphic Processing Units (GPU) and Universal Software Radio Peripheral2 (USRP2) with URSP Hardware Driver (UHD) for SDR software modem and Radio Frequency (RF) transceiver, respectively. We have adopted UHD because UHD provides flexibility in the design of transceiver chain. Also, Cognitive Radio (CR) engine have been implemented by using libraries from UHD. Meanwhile, we have implemented the software modem in our system on GPU which is suitable for parallel computing due to its powerful Arithmetic and Logic Units (ALUs). From our experiment tests, we have measured the total processing time for a single frame of both transmit and receive LTE UL data to find that it takes about 5.00ms and 6.78ms for transmit and receive, respectively. It particularly means that the implemented system is capable of real-time processing of all the baseband signal processing algorithms required for LTE UL system.

Implementation of $2{\times}2$ MIMO LTE Base Station using GPU for SDR System (GPU를 이용한 SDR 시스템 용 LTE MIMO 기지국 기능 구현)

  • Lee, Seung Hak;Kim, Kyung Hoon;Ahn, Chi Young;Choi, Seung Won
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.8 no.4
    • /
    • pp.91-98
    • /
    • 2012
  • This paper implements 2X2 MIMO Long Term Evolution (LTE) base station using Software defined radio (SDR) technology. The implemented base station system processes baseband signals on a Graphics Processor Unit(GPU). GPU is a high-speed parallel processor which provides very important advantage of using a very powerful C-based programming environment that is Compute Unified Device Architecture (CUDA). The implemented software-based base station system processes baseband signals through GPU. It utilizes USRP2 as its RF transceiver. In order to guarantee a real-time processing of LTE baseband signals, we have adopted well-known signal processing algorithms such as frame synchronization algorithms, ML detection, etc. using GPU operating in parallel processing.

Implementation of Retransmission in TDD LTE MU-MIMO system using GPU (GPU를 이용한 TDD LTE MU-MIMO 시스템에서의 재전송 구현)

  • Park, Jonggeun;Choi, Seungwon
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.13 no.2
    • /
    • pp.35-42
    • /
    • 2017
  • The TDD LTE MU-MIMO HARQ system is designed and implemented using GPU based on 3GPP Rel.10 standard. The system consists of the DU part of the base station and the terminal using the general computer based on the GeForce GTX TITAN graphics card provided by NIVIDIA, and constructed the part of the RU using USRP N210 provided by Ettus. In the implementation part, SDR standard is applied, so that various communication standards can be compatible with software. The retransmission is implemented by combining the previous data with the retransmission data using Chase Combining among HARQ methods. In order to confirm that the retransmission was successful, the performance evaluation used LLR constellation. First, if there is an error in the data, the LLR value is not distributed at the corresponding position. in this case, a retransmission is performed to chase combine the previously stored error data and retransmitted data. As a result, the LLR value was distributed at the position of the corresponding LLR value per bit. Through this, it can be confirmed that error - free data is formed by using Chase Combining after retransmission.