DOI QR코드

DOI QR Code

Design and Implementation of LTE-TDD 2×2 MIMO Bidirectional RF Hybrid Beamforming System

LTE-TDD 2×2 MIMO 양방향 RF 하이브리드 빔포밍 시스템 설계 및 구현

  • 이광석 (광운대학교 전자통신공학과) ;
  • 김동현 (국방과학연구소 제2본부) ;
  • 오혁준 (광운대학교 전자통신공학과)
  • Received : 2018.06.14
  • Accepted : 2018.06.24
  • Published : 2018.08.31

Abstract

This paper presented the implementation and design of the 2T-2R wireless HD video streaming systems over 1.7 GHz frequency band using 3GPP LTE-TDD standard on NI USRP RIO SDR platform. The baseband of the system used USRP RIO that are stored in Xilinx Kintex-7 chip to implement LTE-TDD transceiver modem, the signal that are transmitted from USRP RIO up or down converts to 1.7 GHz by using self-designed 1.7 GHz RF transceiver modules and it is finally communicated HD video data through self-designed 2x9 sub array antennas. It is that communication method between USRP RIO and Host PC use PCI express x4 to minimize delay of data to transmit and receive. The implemented system show high error vector magnitude performance above 32 dBc and to transmit and receive HD video in experiment environment anywhere. The proposed hybrid beam forming system could be used not only in the future 5G mobile communication systems under 6 GHz frequency band but also in the systems over 6 GHz frequency band like ones in mmWave frequency bands.

본 논문은 1.7 GHz 주파수 대역에서 HD 비디오를 무선으로 송수신하는 2T-2R(2 Transmitter-2 Receiver) 시스템을 설계 및 구현하였다. 해당 시스템은 HDL로 설계한 LTE-TDD 송수신 모뎀을 USRP RIO에 내장된 Xilinx Kintex-7칩에 구현하여 USRP RIO를 베이스밴드로 사용하였으며, USRP RIO에서 송수신되는 신호는 자체 설계한 1.7 GHz RF송수신 모듈로 업 다운 변환을 수행한 후 자체 설계한 2x9 서브 배열 안테나를 통해 최종적으로 HD 비디오 데이터를 통신하게 된다. USRP RIO와 Host PC의 통신방식은 데이터 송수신시 발생되는 지연을 최소화하기 위해 PCI express(Peripheral Component Intercon nect express)x4를 사용하였다. 구현한 시스템은 EVM 32 dBc의 기본 성능을 보였으며, 실험환경 내 어디서든 HD 비디오를 성공적으로 송수신하였다. 본 논문에서 제안하는 내용은 6 GHz 이하의 차세대 5G 이동통신 시스템뿐만 아니라 추후 밀리미터 대역을 사용하는 광대역 5G 이동통신 시스템으로의 활용이 가능하다.

Keywords

References

  1. 3GPP Spec Series 38.200 Series. [Online]. Available : http://www.3gpp.org
  2. Kim M, Park J, Nah M, and Cho S "Development Trend of 5G Mobile Communication," The Journal of KICS, Vol. 32, 9(1), pp. 46-54, 2015.
  3. Liu D, Wang L, Chen Y, Elkashlan M, Wong K, Schober R, and Hanzo L "Use Association in 5G Networks: A Survey and an Outlook," IEEE Communications Surveys and Tutorials, Issue 99, pp. 1-27, 2016.
  4. 3GPP Spec Series 36.200 Series. [Online]. Available : http://www.3gpp.org
  5. Park S, Kim S, Son J, and Shin H "Design of 4x4 Butler Matrix Based 28GHz Switching Beam Forming Antenna Systems," The Journal of KIEES, Vol. 26, No. 10, pp. 876-884, 2015.
  6. Deepa T and Kumar R, "Performance of Comparison Metrics on M-QAM OFDM Systems with High Power Amplifier," 2012 World Congress on Information and Communication Technologies, pp. 909-914, 2012.
  7. NI USRP RIO Page. [Online]. Available : http://www.ni.com
  8. Wang Y, Wang J, Yi K, and Tian B, "PAPR Reduction of OFDM Signals with Minimized EVM via Semidefinite Relaxation," IEEE Trans. on Vehicular Technology, Vol. 60, Issue. 9, pp. 4662-4667, 2011. https://doi.org/10.1109/TVT.2011.2168614
  9. Jung M, Lee J, and Jung T, “High Performance Mobile Transmission Rate and Physical Layer Linear Error Correction Performance Verification,” Journal of KSIIS, Vol. 22, No. 3, pp. 19-26, 2017.
  10. Won H, "Channel Selective Relay-based Transmission System for Broadband Wireless Communications," Journal of KSIIS, Vol. 14, No. 4, pp. 8-15, 2009.