• Title/Summary/Keyword: USP10

Search Result 102, Processing Time 0.03 seconds

USP44 Promotes the Tumorigenesis of Prostate Cancer Cells through EZH2 Protein Stabilization

  • Park, Jae Min;Lee, Jae Eun;Park, Chan Mi;Kim, Jung Hwa
    • Molecules and Cells
    • /
    • v.42 no.1
    • /
    • pp.17-27
    • /
    • 2019
  • Ubiquitin-specific protease 44 (USP44) has been implicated in tumor progression and metastasis across various tumors. However, the function of USP44 in prostate cancers and regulatory mechanism of histone-modifying enzymes by USP44 in tumors is not well-understood. Here, we found that enhancer of zeste homolog 2 (EZH2), a histone H3 lysine 27 methyltransferase, is regulated by USP44. We showed that EZH2 is a novel target of USP44 and that the protein stability of EZH2 is upregulated by USP44-mediated deubiquitination. In USP44 knockdown prostate cancer cells, the EZH2 protein level and its gene silencing activity were decreased. Furthermore, USP44 knockdown inhibited the tumorigenic characteristics and cancer stem cell-like behaviors of prostate cancer cells. Inhibition of tumorigenesis caused by USP44 knockdown was recovered by ectopic introduction of EZH2. Additionally, USP44 regulates the protein stability of oncogenic EZH2 mutants. Taken together, our results suggest that USP44 promotes the tumorigenesis of prostate cancer cells partly by stabilizing EZH2 and that USP44 is a viable therapeutic target for treating EZH2-dependent cancers.

USP15 inhibits multiple myeloma cell apoptosis through activating a feedback loop with the transcription factor NF-κBp65

  • Zhou, Lili;Jiang, Hua;Du, Juan;Li, Lu;Li, Rong;Lu, Jing;Fu, Weijun;Hou, Jian
    • Experimental and Molecular Medicine
    • /
    • v.50 no.11
    • /
    • pp.11.1-11.12
    • /
    • 2018
  • USP15 has been shown to stabilize transcription factors, to be amplified in many cancers and to mediate cancer cell survival. However, the underlying mechanism by which USP15 regulates multiple myeloma (MM) cell proliferation and apoptosis has not been established. Here, our results showed that USP15 mRNA expression was upregulated in MM patients. USP15 silencing induced MM cell proliferation inhibition, apoptosis, and the expression of nuclear and cytoplasmic NF-${\kappa}Bp65$, while USP15 overexpression exhibited an inverse effect. Moreover, in vivo experiments indicated that USP15 silencing inhibited MM tumor growth and NF-${\kappa}Bp65$ expression. PDTC treatment significantly inhibited USP15 overexpression-induced cell proliferation, apoptosis inhibition, and NF-${\kappa}Bp65$ expression. USP15 overexpression promoted NF-${\kappa}Bp65$ expression through inhibition of its ubiquitination, whereas NF-${\kappa}Bp65$ promoted USP15 expression as a positive regulator. Taken together, the USP15-NF-${\kappa}Bp65$ loop is involved in MM tumorigenesis and may be a potential therapeutic target for MM.

USP14 inhibition regulates tumorigenesis by inducing apoptosis in gastric cancer

  • Mi Yea Lee;Min-Jee Kim;Jun-O Jin;Peter Chang-Whan Lee
    • BMB Reports
    • /
    • v.56 no.8
    • /
    • pp.451-456
    • /
    • 2023
  • Deubiquitinases (DUBs) are an essential component of the ubiquitin-proteasome system (UPS). They trim ubiquitin from substrate proteins, thereby preventing them from degradation, and modulate different cellular processes. Ubiquitin-specific protease 14 (USP14) is a DUB that has mainly been studied for its role in tumorigenesis in several cancers. In the present study, we found that the protein levels of USP14 were remarkably higher in gastric cancer tissues than in the adjacent normal tissues. We also demonstrated that the inhibition of USP14 activity using IU1 (an USP14 inhibitor) or the inhibition of USP14 expression using USP14-specific siRNA markedly reduced the viability of gastric cancer cells and suppressed their migratory and invasive abilities. The reduction in gastric cancer cell proliferation due to the inhibition of USP14 activity was a result of the increase in the degree of apoptosis, as evidenced by the increased expression levels of cleaved caspase-3 and cleaved PARP. Furthermore, an experiment using the USP14 inhibitor IU1 revealed that the inhibition of USP14 activity suppressed 5-fluorouracil (5-FU) resistance in GC cells. Collectively, these findings indicate that USP14 plays critical roles in gastric cancer progression and suggest its potential to serve as a novel therapeutic target for gastric cancer treatment.

Association of the ubiquitin specific peptidase 9X -linked and Afadin expression patterns with sexual maturation in boar testis

  • Baek, Sun-Young;Lee, Seung-Hoon;Kim, Youngshin;Hong, Joon-Ki;Cho, Eunseok;Ha, Seungmin;Kim, Kyungwoon;Sa, Soojin;Chung, Hakjae
    • Journal of Animal Science and Technology
    • /
    • v.63 no.5
    • /
    • pp.977-983
    • /
    • 2021
  • Closely correlated expression patterns between ubiquitin specific peptidase 9X-linked (USP9X) and adherens junction formation factor (Afadin) in mouse testis development suggests that Usp9x regulates the deubiquitination of Af-6 (also known as Afadin, AFDN), and subsequently, the cell adhesion dynamics during gametogenesis. However, this relationship has not yet been tested in other domestic animals. The study was examined the temporal and spatial expression patterns of porcine USP9X and AFDN from the pre-pubertal to adult stages using real time-PCR and immunohistochemistry. Furthermore, we detected the transcripts of USP9X and AFDN in the testis of 1-, 6- and 12-months old boar, respectively. USP9X and AFDN were found to have similar expressions patterns, with basal expression after 1 month followed by a significant up-regulation from 6 months (puberty) onwards. In addition, neither the AFDN or USP9X proteins were detected in spermatogenic cells but they were expressed in the leydig cells and sertoli cells. USP9X was detected around the basal lamina during pre-puberty, and predominantly expressed in the leydig cells at puberty. Finally, in adult testis, USP9X was increased at the sertoli cell-cell interface and the sertoli cell-spermatid interface. In summary, closely correlated expression patterns between USP9X and AFDN in boar testis supports the previous findings in mice. Furthermore, the junction connections between the sertoli cells may be regulated by the ubiquitination process mediated via USP9X.

Cytostatic in vitro Effects of DTCM-Glutarimide on Bladder Carcinoma Cells

  • Brassesco, Maria S.;Pezuk, Julia A.;Morales, Andressa G.;De Oliveira, Jaqueline C.;Valera, Elvis T.;Da Silva, Glenda N.;De Oliveira, Harley F.;Scrideli, Carlos A.;Umezawa, Kazuo;Tone, Luiz G.
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.5
    • /
    • pp.1957-1962
    • /
    • 2012
  • Bladder cancer is a common malignancy worldwide. Despite the increased use of cisplatin-based combination therapy, the outcomes for patients with advanced disease remain poor. Recently, altered activation of the PI3K/Akt/mTOR pathway has been associated with reduced patient survival and advanced stage of bladder cancer, making its upstream or downstream components attractive targets for therapeutic intervention. In the present study, we showed that treatment with DTCM-glutaramide, a piperidine that targets PDK1, results in reduced proliferation, diminished cell migration and G1 arrest in 5637 and T24 bladder carcinoma cells. Conversely, no apoptosis, necrosis or autophagy were detected after treatment, suggesting that reduced cell numbers in vitro are a result of diminished proliferation rather than cell death. Furthermore previous exposure to 10 ${\mu}g/ml$ DTCM-glutarimide sensitized both cell lines to ionizing radiation. Although more studies are needed to corroborate our findings, our results indicate that PDK1 may be useful as a therapeutic target to prevent progression and abnormal tissue dissemination of urothelial carcinomas.

Deubiquitinase USP35 as a novel mitotic regulator via maintenance of Aurora B stability

  • Park, Jinyoung;Song, Eun Joo
    • BMB Reports
    • /
    • v.51 no.6
    • /
    • pp.261-262
    • /
    • 2018
  • Aurora B is an important kinase involved in dynamic cellular events in mitosis. Aurora B activity is controlled by several post-translational modifications (PTMs). Among them, E3 ubiquitin ligase-mediated ubiquitination plays crucial roles in controlling the relocation and degradation of Aurora B. Aurora B, ubiquitinated by different E3 ligases, moves to the exact site for its mitotic function during metaphase-anaphase transition and is then degraded for cell cycle progression at the end of mitosis. However, how the stability of Aurora B is maintained until its degradation has been poorly understood. Recently, we have found that USP35 acts as a deubiquitinating enzyme (DUB) for Aurora B and affects its stability during cell division, thus being involved in the regulation of mitosis. In this review, we discuss the USP35-mediated deubiquitination of Aurora B and the regulation of mitotic progression by USP35.

Interaction of GAT1 with Ubiquitin-Specific Protease Usp14 in Synaptic Terminal (GAT1과 ubiquitin-specific protease Usp14의 결합)

  • Seog, Dae-Hyun;Kim, Sang-Jin;Joung, Young-Ju;Yea, Sung-Su;Park, Yeong-Hong;Kim, Moo-Seong;Moon, Il-Soo;Jang, Won-Hee
    • Journal of Life Science
    • /
    • v.20 no.7
    • /
    • pp.1005-1011
    • /
    • 2010
  • $\gamma$-aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the central nervous system. GABA transporters (GATs) control extracellular GABA levels by reuptake of released GABA from the synaptic cleft. However, how GATs are regulated has not yet been elucidated. Here, we used the yeast two-hybrid system to identify the specific binding protein(s) that interacts with the carboxyl (C)-terminal region of GAT1, the major isoform in the brain and find a specific interaction with the ubiquitin-specific protease 14 (Usp14), a deubiquitinating enzyme. Usp14 protein bound to the tail region of GAT1 and GAT2 but not to other GAT members in the yeast two-hybrid assay. The C-terminal region of Usp14 is essential for interaction with GAT1. In addition, these proteins showed specific interactions in the glutathione S-transferase (GST) pull-down assay. An antibody to GAT1 specifically co-immunoprecipitated Usp14 from mouse brain extracts. These results suggest that Usp14 may regulate the number of GAT1 at the cell surface.

Associations of Ubiquitin-Specific Protease Genes with Resilience and Social Anxiety in Healthy Youths

  • Seo, Jun Ho;Park, Chun Il;Kim, Se Joo;Kang, Jee In
    • Anxiety and mood
    • /
    • v.15 no.2
    • /
    • pp.122-126
    • /
    • 2019
  • Objective : Dynamic proteolysis, through the ubiquitin-proteasome system, is an important molecular mechanism for the constant regulation of synaptic plasticity and stress responses in humans. In this study, we examined whether genetic variants in the ubiquitin-specific peptidase (USP) genes were associated with psychological traits of resilience and susceptibility to neuropsychiatric disorders for each gender. Methods : A total of 344 Korean healthy youths (190 males, 154 females) were included in the study. A genotyping of rs2241646 of USP2 and rs346006 of USP46 was performed. The Connor-Davidson Resilience Scale and Brief Fear of Negative Evaluation Scale were administered for measuring trait resilience and social anxiety, respectively. The genetic associations of the USP variants were tested using multiple analyses of covariance with psychological traits as dependent variables after controlling for age in each gender. Results : For USP2 rs2241646, women with the TT genotype showed significantly higher resilience and lower social anxiety, as compared to those carrying the C allele. There were no associations between USP46 rs346005 and the psychological traits in both genders. Conclusions : The present study showed a possible genetic association between the USP2 rs2241646 and stress resilience and trait anxiety in women. The findings suggest that ubiquitin-proteasome system may be related to the resilience and susceptibility to stress-related neuropsychiatric disorders such as anxiety disorders, possibly through the regulation of dynamic proteolysis responses to stress.

Impact of different agitation methods on smear layer cleaning of mesial canals with accentuated curvature

  • Abel Teves Cordova;Murilo Priori Alcalde;Michel Espinosa Klymus;Leonardo Rigoldi Bonjardim;Rodrigo Ricci Vivan;Marco Antonio Hungaro Duarte
    • Restorative Dentistry and Endodontics
    • /
    • v.49 no.2
    • /
    • pp.12.1-12.10
    • /
    • 2024
  • Objectives: This study evaluated the impact of different methods of irrigant agitation on smear layer removal in the apical third of curved mesial canals of 3 dimensionally (D) printed mandibular molars. Materials and Methods: Sixty 3D-printed mandibular second molars were used, presenting a 70° curvature and a Vertucci type II configuration in the mesial root. A round cavity was cut 2 mm from the apex using a trephine of 2 mm in diameter, 60 bovine dentin disks were made, and a smear layer was formed. The dentin disks had the adaptation checked in the apical third of the teeth with wax. The dentin disks were evaluated in environmental scanning electron microscope before and after the following irrigant agitation methods: G1(PIK Ultrasonic Tip), G2 (Passive Ultrasonic Irrigation with Irrisonic- PUI), G3 (Easy Clean), G4 (HBW Ultrasonic Tip), G5 (Ultramint X Ultrasonic tip), and G6 (conventional irrigation-CI) (n = 10). All groups were irrigated with 2.5% sodium hypochlorite and 17% ethylenediaminetetraacetic acid. Results: All dentin disks were 100% covered by the smear layer before treatment, and all groups significantly reduced the percentage of the smear layer after treatment. After the irrigation protocols, the Ultra-X group showed the lowest coverage percentage, statistically differing from the conventional, PIK, and HBW groups (p < 0.05). There was no significant difference among Ultramint X, PUI-Irrisonic, and Easy Clean (p > 0.05). None of the agitation methods could remove the smear layer altogether. Conclusions: Ultramint X resulted in the most significant number of completely clean specimens.

Physicochemical Properties of Restructured Black Goat Jerky with Various Types of Ultra-Ground Seaweed Powders

  • Ui-Bin Baek;Hack-Youn Kim
    • Food Science of Animal Resources
    • /
    • v.44 no.2
    • /
    • pp.483-497
    • /
    • 2024
  • This study investigated the effects of ultra-ground seaweed powders (USP) on the physicochemical properties (proximate composition, mineral contents, pH, color, shear force, sensory evaluation, electronic nose, and electronic tongue) of restructured black goat jerky. Restructured black goat jerky was prepared using three different treatments, i.e., 3% (w/w) each of ultra-ground sea tangle (ST; Undaria pinnatifida), sea mustard (SM; Saccharina japonica), and sea string (SS; Gracilaria verrucosa) powders. Moisture and ash contents were significantly higher in the USP-treated group than in the control (p<0.05). Potassium, calcium, and zinc contents were significantly higher in the SM than in the other USP-treated groups (p<0.05). In contrast, pH values were significantly higher in the ST and SM than in the control and SS (p<0.05). CIE L*, CIE a*, CIE b*, and shear force were significantly lower in the USP-treated groups than in the control (p<0.05). Sensory evaluation revealed no significant difference in taste, texture, seaweed-like odor, and goaty flavor (p<0.05). Principal component analysis (PCA) and peak graph analysis of the electronic nose showed that the SS differed the most from the control compared with the other USP-treated groups, owing to the seaweed odor of ultra-ground SS powder. The PCA and ranking analysis of the electronic tongue showed that the umami taste of the SM was higher than that of the control and other USP-treated groups. Therefore, the potassium, calcium, zinc contents, and umami taste of reconstituted black goat jerky were significantly higher in the SM than in the control and other USP-treated groups.