• 제목/요약/키워드: USN energy efficient

검색결과 49건 처리시간 0.028초

Cluster Based Energy Efficient 2 stages PEGASIS Routing Protocol for Wireless Sensor Network (USN 환경에서의 클러스터 기반 에너지 효율적인 2단계 PEGASIS 라우팅 규약)

  • Lee, Young-Han;Lee, Kyung-Oh
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 한국정보처리학회 2009년도 추계학술발표대회
    • /
    • pp.437-438
    • /
    • 2009
  • 다양한 환경에서 쓰이고 있는 무선 센서 네트워크 기술은 센서 노드들을 이용하여 정보 수집을 하고 있다. 하지만, 무선 센서 네트워크에서의 센서 노드들은 전력을 유선으로 공급받는 것이 아니라, 제한적인 배터리 용량을 사용하기 때문에 효율적인 배터리 관리가 필요하다. 무선 센서네트워크에서는 이러한 센서 노드들의 에너지 효율을 향상시키기 위해서 현재까지 수많은 라우팅 기법들이 제안되어 왔다[1]. 그중에서 보다 에너지 효율적인 기법인 PEGASIS 기법을 이용하여, PEGASIS기법이 가지고 있는 단점과 그 내용을 보완한 방법을 제시하려한다. 제안된 기법은 기존의 클러스터 기반에서 PEGASIS 기법을 이용하는 방법으로 구성하였다. 이로 인해 기존에 제안되었던, LEACH, LEACH-C, PEGASIS와 비교하였을 때, 센서 노드들의 수명이 전체적으로 증가할 것으로 보고 있다.

An Uniform Routing Mechanism with Low Energy Consumption over Wireless Sensor Network (유비쿼터스 센서네트워크에서 균일한 에너지 소모를 유도하는 경로설정기법)

  • Yoon Mi-Youn;Lee Kwang-Kyun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • 제31권2B호
    • /
    • pp.80-90
    • /
    • 2006
  • WSN(Wireless Sensor Network) performs to detect and collect environmental information for one purpose. As examples, WSN is applicable for home network, patient management of a hospital, logistics management, status detection during the war and so on. The WSN is composed of a sink node and several sensor nodes and has a constraint in an aspect of energy consumption caused by limited battery resource. So many required mechanisms in WSN should consider the remained energy condition. A routing mechanism is requested to deliver the collected information to a sink considering energy efficiency in WSN. There have been many researches to establish (a) route(s) for data delivery to the sink. In this paper, we propose establishment of efficient routes. We proposed a uniform routing mechanism together with considering energy efficiency. For the routing, we define energy probability as routing metrics information and Performs suppression of exchange of control messages. In addition, we derive to uniformly consume the energy of the sensor node when establishing the routes. Also, we evaluate and analyze the energy efficiency for proposed mechanisms through NS-2 simulator.

Region Matching of Satellite Images based on Wavelet Transformation (웨이브렛 변환에 기반한 위성 영상의 영역 정합)

  • Park, Jeong-Ho;Cho, Seong-Ik
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • 제8권4호
    • /
    • pp.14-23
    • /
    • 2005
  • This paper proposes a method for matching two different images, especially satellite images. In the general image matching fields, when an image is compared to other image, they may have different properties on the size, contents, brightness, etc. If there is no noise in each image, in other words, they have identical pixel level and unchanged edges, the image matching method will be simple comparison between two images with pixel by pixel. However, in many applications, most of images to be matched should have much different properties. This paper proposes an efficient method for matching satellite images. This method is to match a raw satellite image with GCP chips. From this we can make a geometrically corrected image. The proposed method is based on wavelet transformation, not required any pre-processing such as histogram equalization, analysis of raw image like the traditional methods.

  • PDF

The Method of Data Integration based on Maritime Sensors using USN (USN을 활용한 해양 센서 데이터 집합 방안)

  • Hong, Sung-Hwa;Ko, Jae-Pil;Kwak, Jae-Min
    • Journal of Advanced Navigation Technology
    • /
    • 제21권3호
    • /
    • pp.306-311
    • /
    • 2017
  • In the future ubiquitous network, information will collect data from various sensors in the field. Since the sensor nodes are equipped with small, often irreplaceable, batteries with limited power capacity, it is essential that the network be energy-efficient in order to maximize its lifetime. In this paper, we propose an effective network routing method that can operate with low power as well as the transmission of data and information obtained from sensor networks, and identified the number of sensors with the best connectivity to help with the proper placement of the sensor. These purposes of this research are the development of the sensor middle-ware to integrate the maritime information and the proposal of the routing algorithm for gathering the maritime information of various sensors. In addition, for more secure ship navigation, we proposed a method to construct a sensor network using various electronic equipments that are difficult to access in a ship, and then construct a communication system using NMEA(the national marine electronics association), a ship communication standard, in the future.

A Study on an Efficient Routing Algorithm for Wireless Sensor Network (무선 센서네트워크에서 효율적인 라우팅 알고리즘에 관한 연구)

  • Kim, Byoung-Chan;Yim, Jae-Hong;Choi, Hong-Seok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • 제13권5호
    • /
    • pp.887-898
    • /
    • 2009
  • Conventional routing protocols proposed for wireless sensor networks (WSNs) cannot fully accommodate the characteristics of WSNs. In particular, although it is possible to largely obtain benefits in the solution of energy consumption and global identification problems through applying position information, there are few protocols that actively apply such position information. In the case of geographical and energy aware routing (GEAR) that is a typical algorithm, which uses position information, it does not fully represent the characteristics of WSNs because it is limited to forward query messages and assumed as fixed network environments. The routing protocols proposed in this paper defines the direction of data, which is routed based on the position information of individual and target nodes, in which each node configures its next hop based on this direction and routes signals. Because it performs data-centric routing using position information, it does not require certain global identifications in order to verify individual nodes and is able to avoid unnecessary energy consumption due to the forwarding of packets by defining its direction.

An Efficient Search Algorithm for Shorten Routing Path in ZigBee Networks (ZigBee 네트워크에서 효율적인 단축 경로 검색 알고리즘)

  • Kim, Doo-Hyun;Cho, Sung-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • 제34권12B호
    • /
    • pp.1535-1541
    • /
    • 2009
  • In this paper, we suggest an efficient path searching algorithm that reduces the hop count when each node sends a data in ZigBee networks. As the hop count reduces, the network traffic is also reduces and leads to less energy consumption. This enables the sensor network live longer with limited node power. The proposed path searching algorithm consists of two sub-algorithms. One for upstream process and the other for downstream process. When a node selects its proper routing path, the node not only uses the information of the parent and child node, but it also uses the neighbor nodes for each node. In the simulation, we changed various network environment factors such as network parameters, number of nodes, and number of neighbor nodes and observed their performances. We compare the performance to the previous ZigBee Tree routing algorithm with separate two algorithms, the upstream and the downstream, and then compare the performance when all two algorithms are applied.

A Middleware System for Efficient Acquisition and Management of Heterogeneous Geosensor Networks Data (이질적인 지오센서 네트워크 데이터의 효율적인 수집 및 관리를 위한 미들웨어 시스템)

  • Kim, Min-Soo;Lee, Chung-Ho
    • Spatial Information Research
    • /
    • 제20권1호
    • /
    • pp.91-103
    • /
    • 2012
  • Recently, there has been much interest in the middleware that can smoothly acquire and analyze Geosensor information which includes sensor readings, location, and its surrounding spatial information. In relation to development of the middleware, researchers have proposed various algorithms for energy-efficient information filtering in Geosensor networks and have proposed Geosensor web technologies which can efficiently mash up sensor readings with spatial information on the web, also. The filtering algorithms and Geosensor Web technologies have contributions on energy-efficiency and OpenAPI, however the algorithms and technologies could not support easy and rapid development of u-GIS applications that need various Geosensor networks. Therefore, we propose a new Geosensor network middleware that can dramatically reduce the time and cost required for development of u-GIS applications that integrate heterogeneous Geosensor networks. The proposed middleware has several merits of being capable of acquiring heterogeneous Geosensor information using the standard SWE and an extended SQL, optimally performing various attribute and spatial operators, and easily integrating various Geosensor networks. Finally, we clarify our middleware's distinguished features by developing a prototype that can monitor environmental information in realtime using spatial information and various sensor readings of temperature, humidity, illumination, imagery, and location.

Adaptive Range Aggregation Index Method for Efficient Spatial Range Query in Ubiquitous Sensor Networks (USN환경에서 효율적인 공간영역질의를 위한 적응형 영역 집계 인덱스 기법)

  • Li, Yan;Eo, Sang-Hun;Cho, Sook-Kyoung;Lee, Soon-Jo;Bae, Hae-Yeong
    • Journal of Korea Spatial Information System Society
    • /
    • 제9권2호
    • /
    • pp.93-107
    • /
    • 2007
  • In this paper, an adaptive range aggregation spatial index method is proposed for spatial range query in ubiquitous sensor networks. As the ubiquitous sensor networks are the new information-oriented paradigm, many energy efficient spatial range query methods in ubiquitous sensor networks environment are studied vigorously. In sensor networks, users can monitor environment scalar data such as temperature and humidity during user defined time and spatial ranges. In order to execute spatial range query efficiently, rectangle based index methods are proposed, such as SPIX. But they define the return path as the opposite of its query transmit path. However, the sensor nodes in queried ranges are closed to each other, they can't aggregate the sensed value in a queried range because their query transmission paths are different. As a result, the previous methods waste energy unnecessarily to aggregate sensing data out of the queried range. In this paper, an adaptive aggregation index method is proposed that can aggregate values in a user defined range adaptively by using its neighbor information. It is shown that sensor power is saved efficiently by using the proposed method over the performance evaluation.

  • PDF

Ubiquitous sensor network based plant factory LED lighting system development (유비쿼터스 센서 네트워크 기반의 식물공장 LED 조명 시스템 개발)

  • Yang, Heekwon;Shin, Minseock;Lee, Chankil
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 한국정보통신학회 2013년도 춘계학술대회
    • /
    • pp.845-848
    • /
    • 2013
  • Due to intense climate changes and extreme weather conditions a noticeable decrease has been observed in the growth of certain plants. The indoor plant factories would have certain benefits including increase in crop yield, reduction in distribution cost, and maintains the healthy freshness level of the agricultural product. Recently, an artificial light source with optimum wavelength is spot lighted to fulfill the need of light for the indoor plant factories. The energy efficient light emitting diodes (LED) provide the essential light energy for the proper growth of indoor cultivated plants. This work focuses to utilize ubiquitous sensors network(USN) in providing suitable environment for the proper growth of agricultural product inside the indoor plant factory. The proposed system makes use of sensors and actuators, communicating each other through WPAN, ZigBee network. The proposed system obscured the traditional indoor plant factories with easy installation and wireless connectivity of the sensors and actuators along with eliminating the web of wires reducing the initial installation and maintenance cost.

  • PDF