• Title/Summary/Keyword: UPFC

Search Result 158, Processing Time 0.029 seconds

A Study on Distance Relay Characteristics for Transmission Line wish the Unified Power Flow Controller (송전선로에 UPFC연계시 거리계전기 동작특성에 관한 연구)

  • 서정남;정창호;김진오
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.16 no.1
    • /
    • pp.100-105
    • /
    • 2002
  • This paper represents impedance calculation of the distance relay using PSCAD/EMTDC software for transmission line involving the UPFC(Unified Power Flow Controller)device, which is the most vigorous component of FACTS. The presence of the UPFC significantly affects the line parameters of transmission system, which are also influenced by the distance relay setting. Moreover, depending on the UPFC location and its parameters, zones of setting the distance relay will be changed. The presence of the UPFC in the fault loop affects both voltage and current seen by relay. Therefore, the distance relay should be taken into account the variable injected voltage of the UPFC.

Development of UPFC GTO Thyristor Valve Test Equipment (UPFC GTO Thyristor VTE(Valve Test Equipment) 개발)

  • Kim, Soo-Yeol;Chang, Byung-Hoon;Yoon, Jong-Soo;Kim, Yong-Hak;Baek, Doo-Hyun
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.13 no.5
    • /
    • pp.391-395
    • /
    • 2008
  • KEPCO 80MVA UPFC has been operated in Gangjin Substation since May 2003. This UPFC is composed of 40MVA shunt inverter and 40MVA series inverter, and developed in technical cooperation between Hyosung and Siemens. KEPCO has tried to localize UPFC control technique after its installation and developed GTO Thyristor Valve Test Equipment for annual maintenance test. The development of this equipment make it possible to process GTO Thyristor module test automatically and manage historic data systematically, which could improve UPFC reliability.

Application and Control of UPFC for Improving Power System Oscillation Damping (전력시스템 동요억제를 위한 UPFC 적용 및 제어)

  • Kim, Y.S.;Kim, T.J.;Lee, B.H.;Han, H.G.;Son, K.M.;Park, J.K.
    • Proceedings of the KIEE Conference
    • /
    • 1997.07c
    • /
    • pp.1124-1126
    • /
    • 1997
  • The Unified Power Flow Controller(UPFC) with a series inverter and a shunt inverter ia able to control all three line Parameters(voltage, impedance and phase angle) and so UPFC technology has the potential to enhance the implementation and broad application of the FACTS concept with improved Performance. In this Paper, the UPFC is applied in order to improve the power flow oscillation damping. The modal performance measure is minimized in order to determine the optimal parameters of UPFC controller for damping Power flow oscillations. The dynamics of the injected voltage of UPFC is represented as a first order delay element. The UPFC controller used here is of the PIO type and the input signal to the controller is the active power flow through the UPFC. The effect of UPFC application to the Power system are analyzed from the stand point of power system oscillation damping.

  • PDF

Study of Dynamic Characteristics of an UPFC Switching-Level Model (UPFC의 스위칭레벨 상세 모의 및 동적 특성 고찰)

  • Won, D.J.;Kim, S.H.;Han, H.G.;Lee, S.K.;Moon, S.I.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07c
    • /
    • pp.1287-1289
    • /
    • 1999
  • The UPFC(Unified Power Flow Controller) controls the magnitude and phase of the series injected voltage to exchange the real and reactive power with transmission line. The UPFC consists of two inverters connected together through the DC link capacitor. This paper describes the detailed UPFC switching-level model. PWM (Pulse Width Modulation) method is chosen to operate the inverters. Automatic voltage control mode and automatic power flow control mode is selected to control the UPFC. EMTP simulation is offered to obtain the basic operation characteristics of the UPFC and the dynamic characteristics of the UPFC is studied in detail.

  • PDF

The Analysis of 80MVA UPFC application effect using EMTDC (EMTDC를 이용한 80MVA UPFC(Unified Power Flow Controller) 계통적용 효과 분석)

  • Yoon, Jong-Su;Chang, Byung-Hoon;Oh, Kwan-Il;Choo, Jin-Boo
    • Proceedings of the KIEE Conference
    • /
    • 2001.07a
    • /
    • pp.93-96
    • /
    • 2001
  • 본 논문은 2003년 한전 실계통(154kV 강진 S/S)에 적용예정인 80MVA UPFC(Unified Power Flow Controller) 시스템의 적용효과를 EMTDC/PSCAD 프로그램을 이용하여 분석한 결과이다. UPFC는 현재까지 개발된 FACTS 기기중 전압, 임피던스, 위상각등 전력전송 제어를 위한 송전선로의 모든 파라미터를 동시에 제어 할 수 있는 유일한 FACTS기기[1]로서 미국 Inez S/S에 이어 세계 두번째로 강진 S/S에 80MVA 용량의 UPFC가 실계통 적용될 예정이다. 본 논문은 대표적인 과도현상 해석프로그램인 EMTDC를 이용한 80MVA UPFC의 적용시 계통 제어효과 분석에 대하여 기술하였다. 적용된 EMTDC UPFC모델은 실제 80MVA UPFC 기기 전력회로, 제어기와 동일하게 모델링하였으며 적용 대상계통은 한전 계통 데이터를 바탕으로 강진 S/S인근 계통을 축약 등가화한 계통모델을 사용하였다.

  • PDF

Coordination of UPFC and Reactive Power Sources for Steady-state Voltage Control (정상상태 전압제어를 위한 UPFC와 조상설비의 협조)

  • Park, Ji-Ho;Lee, Sang-Duk;Jyung, Tae-Young;Jeong, Ki-Seok;Baek, Young-Sik;Seo, Gyu-Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.5
    • /
    • pp.921-928
    • /
    • 2011
  • This paper presents a new method of local voltage control to achieve coordinative control among UPFC(Unified Power Flow Controller) and conventional reactive compensation equipments, such as switched-shunt and ULTC(Under-Load Tap Changing) transformer. Reactive power control has various difficult aspects to control because of difficulty of system analysis. Recently, the progress of power electronics technologies has lead to commercial availability of several FACTS(Flexible AC Transmission System) devices. The UPFC(Unified Power Flow Controller) simultaneously allows the independent control of active and reactive power flows as well as control of the voltage profile. When conventional reactive power sources and UPFC are used to control system voltage, the UPFC reacts to the voltage deviation faster than the conventional reactive power sources. Keeping reactive power reserve in an UPFC during steady-state operation is always needed to provide reactive power requirements during emergencies. Therefore, coordination control among UPFC and conventional reactive power sources is needed. This paper describe the method to keep or control the voltage of power system of local area and to manege reactive power reserve using PSS/E with Python. The result of simulation shows that the proposed method can control the local bus voltage within the given voltage limit and manege reactive power reserve.

Voltage Stability Enhancement by Optimal Placement of UPFC

  • Kowsalya, M.;Ray, K.K.;Shipurkar, Udai;Saranathan
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.3
    • /
    • pp.310-314
    • /
    • 2009
  • This paper presents the improvement of the voltage profiles of power system networks by the inclusion of Unified Power Flow Controller (UPFC). The mathematical model of the UPFC is incorporated in the load flow algorithm and the L-index is calculated for the different values of the control parameter r $and{\gamma}$. The positioning of the UPFC device is changed to minimize the sum of the squares of the L-indices at all load buses. The test cases considered for the improvement of voltage profile with the WSCC 9-bus and IEEE 30 bus system. With the best position of UPFC along with the control parameters the improvement in voltage profile of the power system networks are obtained. The results obtained are quite encouraging compared with other techniques used to identify the best location of UPFC.

The Active and Reactive Power Control of UPFC's for Improving System Sec (계통 안전도를 향상시키기 위한 UPFC의 유효 및 무효 전력 제어)

  • Song, Sung-Hwan;Lim, Jung-Uk;Moon, Seung-Il
    • Proceedings of the KIEE Conference
    • /
    • 2002.07a
    • /
    • pp.277-279
    • /
    • 2002
  • 본 논문은 UPFC(Unified Power Flow Controi)의 유효전력 및 무효전력의 제어를 통해 시스템의 레벨을 향상시키기 위한 운용 알고리즘을 제시한다. 전력 계통에서 UPFC의 효과 분석하기 위해 분리형 모델(decoupled model)을 이용하였다. 본 논문에서는 계통의 조류 및 전압을 이용한 안전도 지수가 제시되었고, 이를 반복계산(iterative method)을 통해 최소화하였다. 이를 위해 각 안전도 지수의 민감도 벡터가 최소화되는 방향으로 UPFC의 운전점을 찾고, 이로써 시스템의 안전도를 증대시킨다. 제안된 알고리즘은 다기의 UPFC를 대상으로 IEEE 30 모선에 적용하여 시스템 안전도 레벨을 검토하였다.

  • PDF

A UPFG Steady-State Model derived from UPFC Bus Power Equation (UPFC 모선전력방정식을 이용한 UPFC 정태 해석모델의 유도)

  • Jeon, D.H.;Kim, T.G.;Yoon, J.S.;Kim, K.J.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07c
    • /
    • pp.1161-1163
    • /
    • 1999
  • This paper presents the new unified power flow controller(UPFC) steady-state model. This is derived from UPFC bus power equations of UPFC Synchronous voltage source model. This is very simple and exact model. This can easily be incorporated in a load flow Program, which is suited for monitoring the Power system state as well as determining the magnitude and phase angle of UPFC serial voltage source.

  • PDF

The Development of New UPFG Steady-State Model using Transmission Line Constant G. B (UPFC가 계통에 미치는 영향을 선로정수 G, B의 함수로 표현한 새로운 UPFC 정태 해석모델 개발)

  • Jeon, D.H.;Kim, T.G.;Chu, J.B.;Kim, K.J.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07c
    • /
    • pp.1167-1169
    • /
    • 1999
  • This paper presents the new unified power flow controller(UPFC) load flow algorithm using UPFC transmission line constant model. The UPFC transmission line constant model represents a function of transmission line constant(G.B) UPFC's effect in power system. It can easily be incorporated in a load flow program. The algorithm is suited for monitoring the power system state as well as determining the magnitude and Phase angle of UPFC serial voltage source.

  • PDF