• 제목/요약/키워드: UIPVS

Search Result 4, Processing Time 0.019 seconds

Source Side Power Factor Correction for Utility Interactive Photovoltaic System (계통연계형 태양광 발전 시스템에서의 전원측 역율 개선)

  • 조영준;김홍성;목형수;최규하;김한성
    • Proceedings of the KIPE Conference
    • /
    • 1997.07a
    • /
    • pp.386-392
    • /
    • 1997
  • Recently, according to developing industry and life style, power consumption have been increased year after year. Currently these much power demand from power consumer is weakening the allowable power reserve margin in summer. As one of the remedies about this problem, the small scale utility interactive photovoltaic system(UIPVS) is considered for auxiliary power source. For this system one of problems to be solved technically, system operating power factor. Generally in case of small scale system, system is operated in unity power factor. But this unity power factor operating mode decrease power factor viewed from utility because UIPVS supply active power to utility. Therefore this paper propose UIPVS with power factor correcting function and this system is analyzed.

  • PDF

Analysis and Design of Utility Interactive Photovoltaic System with Source Side VAR Compensation (전원측 무효전력 보상기능을 갖는 계통연계형 태양광 발전 시스템의 해석 및 설계)

  • 이상용;고재석;한찬영;이정락;최규하;목형수
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.591-594
    • /
    • 1999
  • The application field of photovoltaic system has been increased widely. In the application of photovoltaic system, the utility interactive photovoltaic system(UIPVS) has benefits of not only the home energy saving in domestic system but also reduction of peak power which threaten the capacity of power plant equipment when the maximum power consumption is occurred in daytime. This paper represents the effect of the nonlinear AC load which connected to the UIPVS with parallel connection and introduces the active power filtering(APF) techniques to the UIPVS for the reactive power compensation. The enhancement of source side power quality using APF algorithm is verified using simulation.

  • PDF

Islanding Detection by Harmonic Current Injection Method for Utility Interactive Photovoltaic System (고조파 주입에 의한 계통연계형 태양광발전시스템의 고립운전 검출)

  • 고재석;채영민;강병희;최규하
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.8 no.2
    • /
    • pp.199-210
    • /
    • 2003
  • In this paper, the new Islanding detection method is studied for utility interactive photovoltaic system(UIPVS). It describes the brief of UIPV system and the features of islanding phenomenon. The new islanding detection method for improving the detection characteristics, HCIM(Harmonic Current Injection Method), is proposed and analyzed. The impedance curve of AC load is derived from the complex power equation for testing Islanding detection features. The proposed detection method and the derivation of islanding condition we verified by the simulation with ACSL and the laboratorial experiments.

A Noble Maximum Power Point Tracking Algorithm for Photovoltaic System without Chopper (초퍼 없는 태양광 발전시스템을 위한 새로운 최대전력점 추적 알고리즘)

  • 李 相 庸;崔 海 龍;高 再 錫;姜 秉 憙;李 明 彦;崔 圭 夏
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.7 no.2
    • /
    • pp.171-177
    • /
    • 2002
  • The Photovoltaic systems with solar cell way Provide electrical energy to the utility/consumers, which are becoming one of the promising energy substitutes. The photovoltaic system can be classified into two types : One is the stand-alone type, and the other utility interactive one. The latter can return the generated power to the utility, but the former can't. The utility interactive systems are so valuable for peak power cut in summer season. In the photovoltaic systems the maximum power point tracking (MPPT) has been studied for the increase of the generating energy of the photovoltaic system. There are many control methods of MPPT, but a new MPPT algorithm is proposed to overcome the disadvantages of the conventional ones, and as a result the proposed method enables to improve both tracking ability and generating efficiency of photo voltaic system without DC chopper.