• 제목/요약/키워드: UGT1A1

검색결과 43건 처리시간 0.023초

The Exposure Status and Biomarkers of Polycyclic Aromatic Hydrocarbons in Shipyard Workers

  • Koh, Sang-Baek;Park, Jun-Ho;Yun, Ju-Song;Lee, Kang-Myoung;Cha, Bong-Suk;Chang, Sei-Jin;Kim, Cheong-Sik;Kim, Heon;Chang, Soung-Hoon
    • Molecular & Cellular Toxicology
    • /
    • 제2권2호
    • /
    • pp.134-140
    • /
    • 2006
  • Because shipyard workers are involved with various manufacturing process in shipyard industry, and they are exposed to many kinds of hazardous materials. Especially, painting workers were exposed polycyclic aromatic hydrocarbons (PAH). This study was conducted to assess the exposure status of PAH based on job-exposure matrix. We investigated the effect of genetic polymorphism of xenobiotic metabolism enzymes involved in PAH metabolism on levels of urinary metabolite. A total of 93 shipbuilding workers were recruited in this study. Questionnaire variables were age, sex, use of personal protective equipment, smoking, drinking, and work duration. The urinary metabolite was collected in the afternoon and corrected by urinary creatinine concentration. The genotypes of CYP1A1, CYP2E1, GSTM1, GSTT1 and UGT1A6 were investigated by using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) methods with DNA extracted from venous blood. Urinary 1-OHP levels were significantly higher in direct exposured group (spray and touch-up) than indirect exposed group. Urinary 1-OHP, concentration of the high exposure with wild type of UGT1A6 was significantlyhigher than that of the high exposure with other UGT1A6 genotype. In multiple regression analysis of urinary 1-OHP, the regression coefficient of job grade was statistically significant (p<0.05) and UGT1A6 was not significant but a trend (p<0.1). The grade of exposure affected urinary PAH concentration was statistically significant. But genetic polymorphism of xenobiotics metabolism enzymes was not statistically significant. Further investigation of genetic polymorphism with large sample size is needed.

Anti-inflammatory Effects in LPS-treated RAW 264.7 Cells and the Influences on Drug Metabolizing Enzyme Activities by the Traditional Herbal Formulas, Yongdamsagan-Tang and Paljung-san

  • Ha, Hyekyung;Jin, Seong Eun;Seo, Chang-Seob;Shin, Hyeun-kyoo
    • 대한한의학회지
    • /
    • 제42권4호
    • /
    • pp.10-24
    • /
    • 2021
  • Objectives: Yongdamsagan-tang (YST) and Paljung-san (PJS) in traditional medicine and finasteride in modern medicine are used to treat benign prostatic hyperplasia (BPH). In recent, the use of combination herbal remedies with conventional drugs has been increasing. Therefore, we investigated the anti-inflammatory effects of these drugs to treat BPH and the influence of herbal formulas on finasteride metabolism. Methods: The inhibitory effects of the herbal formulas and finasteride on the production of inflammatory mediators and cytokines were determined in lipopolysaccharide (LPS)-treated RAW 264.7 cells. Additionally, the influence of herbal formulas on activities of human drug metabolizing enzymes (DMEs) was assessed using human microsomal enzymes. Results: We observed that YST, PJS and finasteride inhibited the production of nitric oxide (NO), prostaglandin E2 (PGE2) and interleukin-6 (IL-6) in RAW 264.7 cells. The half maximal inhibitory concentration (IC50) of YST on PGE2 production was calculated to be below 25 ㎍/mL. YST inhibited the activity of uridine diphosphate-glucuronosyltransterase (UGT) 1A4 with an IC50 value of 49.35 ㎍/mL. The activities of cytochrome P450 (CYP) 1A2, CYP2B6, CYP2C19, CYP3A4, and UGT1A1 were inhibited by PJS (IC50 < 100 ㎍/mL, each). Although PJS and YST inhibited the activities of CYP3A4 and UGT1A4, respectively, these formulas may not influence the metabolism of finasteride because the IC50 values of herbal formulas on DMEs are too high to affect metabolism. Conclusions: Our results suggest that the combination of finasteride and YST or PJS might not influence their drug metabolism and that the drugs may have synergistic effects against BPH.

일부 조선업 근로자들의 bisphenol A 노출실태와 생물학적 지표 (The Exposure Status and Biomarkers of Bisphenol A in Shipyard Workers)

  • 김청식;박준호;차봉석;박종구;김헌;장성훈;고상백
    • Journal of Preventive Medicine and Public Health
    • /
    • 제36권2호
    • /
    • pp.93-100
    • /
    • 2003
  • 용접공은 용접과정에서 용접 흄, 중금속 및 bisphenol-A에 노출된다. 따라서 이 연구는 직무노출 메트릭스에 근거하여 근로자들의 내분비 교란물질의 노출실태를 파악하고자 하였다. 또한 생물학적 모니터링에 사용되는 뇨중 대사산물 농도에 영향을 미칠 것으로 생각되는 대사효소의 유전적 다형성 분포를 조사하였으며 이들 유전자가 뇨중 대사산물 배설에 미치는 영향을 연구하고자 하였다. 연구대상자는 경상남도에 있는 모 조선업체에 종사하는 근로자를 대상으로 하였다. 연구대상자는 총 84명으로 용접공 47명과 대조군 37명을 대상으로 하였다. 이름, 연령, 보호구 착용 여부, 흡연습관, 음주여부 등에 대하여 설문조사를 시행하였다. 시료채취는 건강검진이 진행되는 오후에 하였으며 뇨중 BPA는 뇨중 크레아티닌으로 보정하여 측정하였다. 대사효소의 유전자 다형성은 혈액의 백혈구로부터 DNA를 추출하여 제한 효소 절단 단편 다형성(restriction fragment length polymorphism, RFLP)법으로 검사하였다. 흄 중 BPA의 농도는 최대값 229.9 ng/mg, 최소값 5.7 ng/mg, 평균 61.9 ng/mg 이었다. 흄 총 중량과 흄중 BPA 양 간에 상관계수는 0.516으로 양적 선형관계를 보여주었다. 뇨중 BPA 농도는 대조군보다 용접공에서 유의하게 높았다. CYP1A1, CYP2E1, UGT1A6등의 유전자 다형성에 따라 뇨중 BPA 농도에는 차이가 없었다. 뇨중 BPA에 대한 다중회귀분석에서는 노출등급만이 유의한 변수였다. 용접 흄에 노출된 후 뇨중 BPA농도에 영향을 가장 큰 영향을 미치는 것은 노출등급이었으며, 대사효소의 유전적 다형성은 유의한 효과를 나타내지 못하였다.

Metabolomes and transcriptomes revealed the saponin distribution in root tissues of Panax quinquefolius and Panax notoginseng

  • Wei, Guangfei;Yang, Feng;Wei, Fugang;Zhang, Lianjuan;Gao, Ying;Qian, Jun;Chen, Zhongjian;Jia, Zhengwei;Wang, Yong;Su, He;Dong, Linlin;Xu, Jiang;Chen, Shilin
    • Journal of Ginseng Research
    • /
    • 제44권6호
    • /
    • pp.757-769
    • /
    • 2020
  • Background: Panax quinquefolius and Panax notoginseng are widely used and well known for their pharmacological effects. As main pharmacological components, saponins have different distribution patterns in the root tissues of Panax plants. Methods: In this study, the representative ginsenosides were detected and quantified by desorption electrospray ionization mass spectrometry and high-performance liquid chromatography analysis to demonstrate saponin distribution in the root tissues of P. quinquefolius and P. notoginseng, and saponin metabolite profiles were analyzed by metabolomes to obtain the biomarkers of different root tissues. Finally, the transcriptome analysis was performed to demonstrate the molecular mechanisms of saponin distribution by gene profiles. Results: There was saponin distribution in the root tissues differed between P. quinquefolius and P. notoginseng. Eight-eight and 24 potential biomarkers were detected by metabolome analysis, and a total of 340 and 122 transcripts involved in saponin synthesis that were positively correlated with the saponin contents (R > 0.6, P < 0.05) in the root tissues of P. quinquefolius and P. notoginseng, respectively. Among them, GDPS1, CYP51, CYP64, and UGT11 were significantly correlated with the contents of Rg1, Re, Rc, Rb2, and Rd in P. quinquefolius. UGT255 was markedly related to the content of R1; CYP74, CYP89, CYP100, CYP103, CYP109, and UGT190 were markedly correlated with the Rd content in P. notoginseng.

Amprolium hydrochloride가 넙치 Paralichthys olivaceus의 약물대사 유전자 발현에 미치는 영향 (Effects of amprolium hydrochloride on expression of drug metabolizing enzyme genes in olive flounder Paralichthys olivaceus)

  • 박상협;김창환;도정완;최혜승;김이경
    • 한국어병학회지
    • /
    • 제36권2호
    • /
    • pp.337-348
    • /
    • 2023
  • 본 연구에서는 넙치의 해독 과정에서 amprolium hydrochloride의 영향을 평가하기 위해 수행되었다. 이전 연구에서 보고된 amprolium의 LD50 값을 이용하여 두 가지 실험을 진행하였다. 첫 번째는 30마리의 넙치를 5개의 대조군 및 실험군으로 나누었고 4, 8, 16, 32 mg/kg 용량의 amprolium을 근육 내 주사 투여하였다. 주사 후 8, 24, 48 시간에 간과 신장을 적출하여 약물 대사 효소와 전염증성 사이토카인 유전자의 발현을 분석하였다. 32 mg/kg 용량의 실험군에서 IL-1β mRNA의 높은 발현을 확인하였고, CYP1A는 이와 반대의 결과를 보였으며, 간에서 UGT와 GST mRNA의 발현은 유의하게 감소하는 것을 확인하였다. 또한 신장에서 amprolium 주사 투여 후 약물 대사 효소와 사이토카인 유전자의 억제가 관찰되었다. 또 다른 실험에서는 4, 8, 16, 32 mg/kg과 60, 80, 100, 120 mg/kg의 용량을 설정하여 근육 내 주사 투여하였다. 주사를 완료하고 6일 후 간을 적출하여 유전자의 발현을 확인하였다. IL-1β의 발현은 4 mg/kg 용량 실험군에서 유의적으로 매우 높은 발현을 보였다. GST의 mRNA 발현 또한 4 mg/kg 용량 실험군에서 높은 발현을 보였다. 결론적으로 우리의 결과는 amprolium이 가축 산업의 가장 안전한 합성 항콕시듐 약물 중 하나로 간주되지만 넙치의 간접 또는 직접적인 물리적 또는 생물학적 독성을 유발하는 것으로 판단된다.

생물전환으로 생리활성물질인 trifolin의 생합성 (Biosynthesis of trifolin, a bioactive flavonoid by biotransformation)

  • 노혜령;강주영;김봉규
    • Journal of Applied Biological Chemistry
    • /
    • 제64권3호
    • /
    • pp.309-316
    • /
    • 2021
  • Trifolin (kaempferol 3-O-galactoside)는 플라보놀 그룹에 속하는 물질로 아토피, 항균, 폐암에 효과가 있는 것으로 알려져 있다. Trifolin은 다양한 식물에서 추출하여 사용하고 있지만 추출 과정이 복잡하고, 수율이 낮으며, 추출을 위한 바이오매스를 얻는데 계절적 어려움이 있다. 생물전환은 저렴한 화합물에서 고부가가치 화학물질을 생산할 수 있는 대체 수단으로 이용된다. 본 연구에서는 naringenin으로부터 trifolin을 생합성하기 위해 3개의 유전자(PeFLS 및 OsUGE-PhUGT)를 각각의 대장균에 도입한 BL-FLS균주와 BL-UGTE균주를 이용하여 공조배양시스템을 개발하였다. Naringenin으로부터 trifolin을 생합성하기 위해 세포의 밀도, 생물전환 온도, 재조합 단백질 유도의 적정 IPTG농도 및 시간, 기질 공급 농도 등의 최적화를 실시하였다. 최적화된 공동 배양 발효 시스템을 통해 67.3 mg/L의 trifolin을 성공적으로 생합성 하였다.

The Relationship between Prohibitin 1 Expression, Hepatotoxicity Induced by Acetaminophen, and Hepatoprotection by S-Adenosylmethionine in AML12 Cells

  • Eunhye Cho;Soohan Jung;Jina Kim;Kwang Suk Ko
    • Journal of Microbiology and Biotechnology
    • /
    • 제32권11호
    • /
    • pp.1447-1453
    • /
    • 2022
  • Prohibitin 1 (Phb1) is a pleiotropic protein, located mainly in the mitochondrial inner membrane and involved in the regulation of cell proliferation and the stabilization of mitochondrial protein. Acetaminophen (APAP) is one of the most commonly used over-the-counter analgesics worldwide. However, at high dose, the accumulation of N-acetyl-p-benzoquinone imine (NAPQI) can lead to APAP-induced hepatotoxicity. In this study, we sought to understand the regulation of mRNA expression in relation to APAP and GSH metabolism by Phb1 in normal mouse AML12 hepatocytes. We used two different Phb1 silencing levels: high-efficiency (HE, >90%) and low-efficiency (LE, 50-60%). In addition, the siRNA-transfected cells were further pretreated with 0.5 mM of Sadenosylmethionine (SAMe) for 24 h before treatment with APAP at different doses (1-2 mM) for 24 h. The expression of APAP metabolism-related and antioxidant genes such as Cyp2e1 and Ugt1a1 were increased during SAMe pretreatment. Moreover, SAMe increased intracellular GSH concentration and it was maintained after APAP treatment. To sum up, Phb1 silencing and APAP treatment impaired the metabolism of APAP in hepatocytes, and SAMe exerted a protective effect against hepatotoxicity by upregulating antioxidant genes.

Purple Rice Bran Extract Attenuates the Aflatoxin B1-Induced Initiation Stage of Hepatocarcinogenesis by Alteration of Xenobiotic Metabolizing Enzymes

  • Suwannakul, Nattawan;Punvittayagul, Charatda;Jarukamjorn, Kanokwan;Wongpoomchai, Rawiwan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권8호
    • /
    • pp.3371-3376
    • /
    • 2015
  • Pigmented rice bran has been suggested to be a valuable source of beneficial phytochemicals. We investigated genotoxic and anti-genotoxic effects of purple rice bran extract (PRBE) in rats using a liver micronucleus assay. Purple rice bran was extracted with methanol, obtaining large amounts of phenolic compounds, including anthocyanins and small amounts of gamma-oryzanol. The experimental protocols were divided into two sets. Male rats were divided into three groups. Group 1 was a negative control, while Groups 2 and 3 were fed with 100 and 500 mg/kg bw of PRBE, respectively, for 28 days. PRBE had no effect on micronucleus formation or xenobiotic metabolizing enzymes in rat liver. Experiments concerning the effect of PRBE on $AFB_1$ showed that PRBE significantly lessened the amount of micronucleated hepatocytes in $AFB_1$ treated rats. Furthermore, it modulated metabolic activation of $AFB_1$ metabolism in the liver by suppressing activity and protein expression of CYP1A2, CYP3A and CYP 450 reductase, and enhancing phase II enzymes including GST and UGT. Overall, purple rice bran extract was not genotoxic in rats. It exhibited anti-genotoxicity by modulation some xenobiotic enzymes active in $AFB_1$ metabolism.

Stepwise Synthesis of Quercetin Bisglycosides Using Engineered Escherichia coli

  • Choi, Gyu Sik;Kim, Hyeon Jeong;Kim, Eun Ji;Lee, Su Jin;Lee, Youngshim;Ahn, Joong-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • 제28권11호
    • /
    • pp.1859-1864
    • /
    • 2018
  • Synthesis of flavonoid glycoside is difficult due to diverse hydroxy groups in flavonoids and sugars. As such, enzymatic synthesis or biotransformation is an approach to solve this problem. In this report, we used stepwise biotransformation to synthesize two quercetin bisglycosides (quercetin 3-O-glucuronic acid 7-O-rhamnoside [Q-GR] and quercetin 3-O-arabinose 7-O-rhamnoside [Q-AR]) because quercetin O-rhamnosides contain antiviral activity. Two sequential enzymatic reactions were required to synthesize these flavonoid glycosides. We first synthesized quercetin 3-O-glucuronic acid [Q-G], and quercetin 3-O-arabinose [Q-A] from quercetin using E. coli harboring specific uridine diphopsphate glycosyltransferase (UGT) and genes for UDP-glucuronic acid and UDP-arabinose, respectively. With each quercetin 3-O-glycoside, rhamnosylation using E. coli harboring UGT and the gene for UDP-rhamnose was conducted. This approach resulted in the production of 44.8 mg/l Q-GR and 45.1 mg/l Q-AR. This stepwise synthesis could be applicable to synthesize various natural product derivatives in case that the final yield of product was low due to the multistep reaction in one cell or when sequential synthesis is necessary in order to reduce the synthesis of byproducts.