Browse > Article
http://dx.doi.org/10.3839/jabc.2021.042

Biosynthesis of trifolin, a bioactive flavonoid by biotransformation  

Noh, Hye-Ryeong (Department of Forest Resources, Gyeongsang National University)
Kang, Ju-Yeong (Department of Forest Resources, Gyeongsang National University)
Kim, Bong-Gyu (Department of Forest Resources, Gyeongsang National University)
Publication Information
Journal of Applied Biological Chemistry / v.64, no.3, 2021 , pp. 309-316 More about this Journal
Abstract
Kaempferol 3-O-galactoside (Trifolin), a member of the flavonol group, has been reported to have anticancer effects against promyelocytic leukemia, histocytic lymphoma, skin melanoma and lung cancer. Trifolin has been extracted and used from several plants, but the extraction process is complicated and the final yield is low. Biotransformation is an alternative tool to produce high value-added chemicals from inexpensive compounds. To synthesis trifolin from naringenin, three genes (PeFLS and OsUGE-PhUGT) were introduced into Escherichia coli, respectively. In order to synthesis trifolin from naringenin, a co-culture fermentation system was established by optimizing the cell concentration, biotransformation temperature and medium, isopropyl-β-D-thiogalactoside (IPTG) concentration, substrate supply concentration, and recombinant protein induction time. The established optimal conditions for trifolin production were a 3:1 ratio of BL-UGTE to BL-FLS, induction of recombinant protein at 25 ℃ for 4 h after addition of 2.0 mM IPTG, biotransformation at 30 ℃, and supply of 300 μM naringenin. Through the optimized co-culture fermentation system, trifolin was biosynthesized up to 67.3 mg/L.
Keywords
Biotransformation; Flavonoids; Co-culture; Flavonol synthase; Glycosyltransferase; Trifolin; UDP-galactose 4-epimerase;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Cao H, Chen X, Jassbi AR, Xiao J (2015) Microbial biotransformation of bioactive flavonoids. Biotechnol Adv 33(1):214-223. doi: 10.1016/j.biotechadv.2014.10.012   DOI
2 Schubert BG (1967) Journal of the Arnold Arboretum. Dissertation, The Arnold Arboretum of Harvard Univeisity
3 Perdue RE (1968) Camptotheca acuminata: Source of promising cancer drug. Lasca Leaves 55-59
4 Zhang Y, Wang D, Yang L, Zhou D, Zhang J (2014) Purification and characterization of flavonoids from the leaves of Zanthoxylum bungeanum and correlation between their structure and antioxidant activity. PLoS One 9(8):e105725. doi: 10.1371/journal.pone.0105725   DOI
5 Ragasa CY, Puno MR, Sengson JM, Shen CC, Rideout JA, Raga DD (2009) Bioactive triterpenes from Diospyros blancoi. Nat Prod Res 23(13):1252-1258. doi: 10.1080/14786410902951054   DOI
6 Diaz JG, Carmona AJ, Torres F, Quintana J, Estevez F, Herz W (2008) Cytotoxic activities of flavonoid glycoside acetates from Consolida oliveriana. Planta Med 74(2):171-174. doi: 10.1055/s-2008-1034278   DOI
7 Kim MJ, Kwon SB, Kim MS, Jin SW, Ryu HW, Oh SR, Yoon DY (2016) Trifolin induces apoptosis via extrinsic and intrinsic pathways in the NCI-H460 human non-small cell lung-cancer cell line. Phytomedicine 23(10):998-1004. doi: 10.1016/j.phymed.2016.05.009   DOI
8 Zhang Z, Li S, Zhang S, Liang C, Gorenstein D, Beasley RS (2004) New camptothecin and ellagic acid analogues from the root bark of Camptotheca acuminata. Planta Med 70:1216-1221. doi: 10.1055/s2004-835854   DOI
9 Xingfeng G, Daijie W, Wenjuan D, Jinhua D, Xiao W (2010) Preparative isolation and purification of four flavonoids from the petals of Nelumbo nucifera by high-speed counter-current chromatography. Phytochem Anal 21: 268-272. doi: 10.1002/pca.1196   DOI
10 Maneechai S, De-Eknamkul W, Umehara K, Noguchi H, Likhitwitayawuid K (2012) Flavonoid and stilbenoid production in callus cultures of Artocarpus lakoocha. Phytochemistry. 81:42-49. doi: 10.1016/j.phytochem.2012.05.031   DOI
11 An DG, Yang SM, Kim BG, Ahn JH (2016) Biosynthesis of two quercetin O-diglycosides in Escherichia coli. J Ind Microbiol Biotechnol 43(6):841-849. doi: 10.1007/s10295-016-1750-x   DOI
12 Kim BG (2019) Biosynthesis of bioactive isokaemferide from naringenin in Escherichia coli. J Appl Biol Chem 62(1):1-6. doi: 10.3839/jabc.2019.001   DOI
13 Kim SK, Kim DH, Kim BG, Jeon YM, Hong BS, Ahn JH (2009) Cloning and characterization of the UDP glucose/galactose epimerases of Oryza sativa. J Korean Soc Appl Biol Chem 52(4):315-320   DOI
14 Kim SY, Lee HR, Park KS, Kim BG, Ahn JH (2015) Metabolic engineering of Escherichia coli for the biosynthesis of flavonoid-O-glucuronides and flavonoid-O-galactoside. Appl Microbiol Biotechnol 99:2233-2242. doi: 10.1007/s00253-014-6282-6   DOI
15 Kim BG, Koe EJ, Ahn JH (2009) Molecular characterization of flavonol synthase from poplar and its application to the synthesis of 3-O-methylkaempferol. Biotechnol Lett 32:579-584. doi: 10.1007/s10529-009-0188-x   DOI
16 Kim MJ, Kim BG, Ahn JH (2013) Biosynthesis of bioactive O-methylated flavonoids in Escherichia coli. Appl Microbiol Biotechnol 97(16): 7195-7204   DOI
17 Zhou S, Yuan SF, Nair PH, Alper HS, Deng Y, Zhou J (2021) Development of a growth coupled and multi-layered dynamic regulation network balancing malonyl-CoA node to enhance (2S)-naringenin biosynthesis in Escherichia coli. Metab Eng 67:41-52. doi: 10.1016/j.ymben.2021.05.007   DOI
18 Li M, Zhao M, Wei P, Zhang C, Lu W (2021) Biosynthesis of soyasapogenol B by engineered Saccharomyces cerevisiae. Appl Biochem Biotechnol. doi: 10.1007/s12010-021-03599-5   DOI
19 Hwang EI, Kaneko M, Ohnishi Y, Horinouchi S (2003) Production of plant-specific flavanones by Escherichia coli containing an artificial gene cluster. Appl Environ Microbiol 69: 2699-2706. doi: 10.1128/AEM.69.5.2699-2706.2003   DOI
20 Li S, Zhang Z, Cain A, Wang B, Long M, Taylor J (2005) Antifungal activity of camptothecin, trifolin, and hyperoside isolated from Camptotheca acuminata. J Agric Food Chem. 53(1):32-37. doi: 10.1021/jf0484780   DOI
21 Candolle Ade, Candolle APde (1844) Prodromus systematis naturalis regni vegetabilis, sive, Enumeratio contracta ordinum generum specierumque plantarum huc usque cognitarium, juxta methodi naturalis, normas digesta. Sumptibus Sociorum Treuttel et Wurtz 176-685. doi: 10.5962/bhl.title.286   DOI
22 Dai J, Mumper RJ (2010) Plant phenolics: extraction, analysis and their antioxidant and anticancer properties. Molecules 15: 7313-7352. doi: 10.3390/molecules15107313   DOI
23 Kim BG, Yang SM, Kim SY, Cha MN, Ahn JH (2015) Biosynthesis and production of glycosylated flavonoids in Escherichia coli: current state and perspectives. Appl Microbiol Biotechnol 99(7):2979-2988. doi: 10.1007/s00253-015-6504-6   DOI
24 Kim JH, Kim BG, Park Y, Ko JH, Lim CE, Lim J, Lim Y, Ahn JH (2007) Characterization of flavonoid 7-O-glucosyltransferase from Arabidopsis thaliana. Biosci Biotechnol Biochem 70:1471-1477. doi: 10.1271/bbb.60006   DOI
25 Baillon H (1860) Adansonia; recueil d'observations botaniques /redige par le Dr. H. Baillon. v.1, 109. Nabu Press, Paris
26 Kim BG (2019) Biological synthesis of genistein in Escherichia coli. J Microbiol Biotechnol 30(5):770-776. doi: 10.4014/jmb.1911.11009   DOI
27 Hussain MS, Fareed S, Ansari S, Rahman MA, Ahmad IZ, Saeed M (2012) Current approaches toward production of secondary plant metabolites. J Pharm Bioallied Sci. 4(1):10-20. doi: 10.4103/0975-7406.92725   DOI
28 Lee SJ, Sim GY, Kang H, Yeo WS, Kim BG, Ahn JH (2018) Synthesis of avenanthramides using engineered Escherichia coli. Microb Cell Fact 17(1):46. doi: 10.1186/s12934-018-0896-9   DOI
29 Kim BG (2019) Optimization of bioactive isorhamnetin 3-O-glucoside production in Escherichia coli. J Appl Biol Chem 62(4):361-366. doi: 10.3839/jabc.2019.050   DOI