• 제목/요약/키워드: UDP-glycosyltransferase

검색결과 27건 처리시간 0.03초

Rare ginsenoside Ia synthesized from F1 by cloning and overexpression of the UDP-glycosyltransferase gene from Bacillus subtilis: synthesis, characterization, and in vitro melanogenesis inhibition activity in BL6B16 cells

  • Wang, Dan-Dan;Jin, Yan;Wang, Chao;Kim, Yeon-Ju;Perez, Zuly Elizabeth Jimenez;Baek, Nam In;Mathiyalagan, Ramya;Markus, Josua;Yang, Deok-Chun
    • Journal of Ginseng Research
    • /
    • 제42권1호
    • /
    • pp.42-49
    • /
    • 2018
  • Background: Ginsenoside F1 has been described to possess skin-whitening effects on humans. We aimed to synthesize a new ginsenoside derivative from F1 and investigate its cytotoxicity and melanogenesis inhibitory activity in B16BL6 cells using recombinant glycosyltransferase enzyme. Glycosylation has the advantage of synthesizing rare chemical compounds from common compounds with great ease. Methods: UDP-glycosyltransferase (BSGT1) gene from Bacillus subtilis was selected for cloning. The recombinant glycosyltransferase enzyme was purified, characterized, and utilized to enzymatically transform F1 into its derivative. The new product was characterized by NMR techniques and evaluated by MTT, melanin count, and tyrosinase inhibition assay. Results: The new derivative was identified as (20S)-$3{\beta},6{\alpha},12{\beta}$,20-tetrahydroxydammar-24-ene-20-O-${\beta}$-D-glucopyranosyl-3-O-${\beta}$-D-glucopyranoside(ginsenoside Ia), which possesses an additional glucose linked into the C-3 position of substrate F1. Ia had been previously reported; however, no in vitro biological activity was further examined. This study focused on the mass production of arduous ginsenoside Ia from accessible F1 and its inhibitory effect of melanogenesis in B16BL6 cells. Ia showed greater inhibition of melanin and tyrosinase at $100{\mu}mol/L$ than F1 and arbutin. These results suggested that Ia decreased cellular melanin synthesis in B16BL6 cells through downregulation of tyrosinase activity. Conclusion: To our knowledge, this is the first study to report on the mass production of rare ginsenoside Ia from F1 using recombinant UDP-glycosyltransferase isolated from B. subtillis and its superior melanogenesis inhibitory activity in B16BL6 cells as compared to its precursor. In brief, ginsenoside Ia can be applied for further study in cosmetics.

Biochemical Characterization of Recombinant UDP-Glucose:Sterol 3-O-Glycosyltransferase from Micromonospora rhodorangea ATCC 31603 and Enzymatic Biosynthesis of Sterol-3-O-β-Glucosides

  • Hoang, Nguyen Huu;Hong, Sung-Yong;Huong, Nguyen Lan;Park, Je Won
    • Journal of Microbiology and Biotechnology
    • /
    • 제26권3호
    • /
    • pp.477-482
    • /
    • 2016
  • A uridine diphosphate-glucose:sterol glycosyltransferase-encoding gene was isolated and cloned from the established fosmid library of Micromonospora rhodorangea ATCC 27932 that usually produces the aminoglycoside antibiotic geneticin. The gene consists of 1,185 base pairs and encodes a 41.4 kDa protein, which was heterologously expressed in Escherichia coli BL21(DE3). In silico analyses of the deduced gene product suggested that it is a member of the family 1 glycosyltransferases. The recombinant protein MrSGT was able to catalyze the transfer of a glucosyl moiety onto the C-3 hydroxy function in sterols (β-sitosterol, campesterol, and cholesterol), resulting in the corresponding steryl glucosides (β-sitosterol-3-O-β-ᴅ-glucoside, campesterol-3-O-β-ᴅ-glucoside, and cholesterol-3-O-β-ᴅ-glucoside). This enzyme prefers phytosterols to cholesterol, and also shows substrate flexibility to some extent, in that it could recognize a number of acceptor substrates.

Biochemical Characterization of a Glycosyltransferase Homolog from an Oral Pathogen Fusobacterium nucleatum as a Human Glycan-Modifying Enzyme

  • Kim, Seong-Hun;Oh, Doo-Byoung;Kwon, Oh-Suk;Jung, Jae-Kap;Lee, Yun-Mi;Ko, Ki-Sung;Ko, Jeong-Heon;Kang, Hyun-Ah
    • Journal of Microbiology and Biotechnology
    • /
    • 제18권5호
    • /
    • pp.859-865
    • /
    • 2008
  • Bacterial glycosyltransferases have drawn growing attention as economical enzymes for oligosaccharide synthesis, with their easy expression and relatively broad substrate specificity. Here, we characterized a glycosyltransferase homolog (Fnu_GT) from a human oral pathogen, Fusobacterium nucleatum. Bioinformatic analysis showed that Fnu_GT belongs to the glycosyltransferases family II. The recombinant Fnu_GT (rFnu_GT) expressed in Escherichia coli displayed the highest glycosylation activity when UDP-galactose (Gal) was used as a donor nucleotide-sugar with heptose or N-acetylglucosamine (GlcNAc) as an acceptor sugar. Interestingly, rFnu_GT transferred the galactose moiety of UDP-Gal to a nonreducing terminal GlcNAc attached to the trimannosyl core glycan, indicating its potential as an enzyme for human-type N-glycan synthesis.

Altering UDP-Glucose Donor Substrate Specificity of Bacillus licheniformis Glycosyltransferase towards TDP-Glucose

  • Cho, Kye Woon;Kim, Tae-Su;Le, Tuoi Thi;Nguyen, Hue Thi;Oh, So Yeong;Pandey, Ramesh Prasad;Sohng, Jae Kyung
    • Journal of Microbiology and Biotechnology
    • /
    • 제29권2호
    • /
    • pp.268-273
    • /
    • 2019
  • The specificity of a Bacillus licheniformis uridine diphosphate (UDP) glycosyltransferase, YjiC, was increased towards thymidine diphosphate (TDP)-sugar by site-directed mutagenesis. The Arg-282 of YjiC was identified and investigated by substituting with Trp. Conversion rate and kinetic parameters were compared between YjiC and its variants with several acceptor substrates such as 7-hydroxyflavone (7-HF), 4',7-dihydroxyisoflavone, 7,8-dihydroxyflavone and curcumin. Molecular docking of TDP-glucose and 7-HF with YjiC model showed pi-alkyl interaction with Arg-282 and His-14, and pi-pi interaction with $His^{14}$ and thymine ring. YjiC (H14A) variant lost its glucosylation activity with TDP-glucose validating significance of His-14 in binding of TDP-sugars.

Formation of Flavone Di-O-Glucosides Using a Glycosyltransferase from Bacillus cereus

  • Ahn, Byoung-Chan;Kim, Bong-Gyu;Jeon, Young-Min;Lee, Eun-Jeong;Lim, Yoong-Ho;Ahn, Joong-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • 제19권4호
    • /
    • pp.387-390
    • /
    • 2009
  • Microbial UDP-glycosyltransferases can convert many small lipophilic compounds into glycons using uridine-diphosphate-activated sugars. The glycosylation of flavonoids affects solubility, stability, and bioavailability. The gene encoding the UDP-glycosyltransferase from Bacillus cereus, BcGT-3, was cloned by PCR and sequenced. BcGT-3 was expressed in Escherichia coli BL21(DE3) with a glutathione S-transferase tag and purified using a glutathione S-transferase affinity column. BcGT-3 was tested for activity on several substrates including genistein, kaempferol, luteolin, naringenin, and quercetin. Flavonols were the best substrates for BcGT-3. The enzyme dominantly glycosylated the 3-hydroxyl group, but the 7-hydroxyl group was glycosylated when the 3-hydroxyl group was not available. The kaempferol reaction products were identified as kaempferol-3-O-glucoside and kaempferol-3,7-O-diglucoside. Kaempferol was the most effective substrate tested. Based on HPLC, LC/MS, and NMR analyses of the reaction products, we conclude that BcGT-3 can be used for the synthesis of kaempferol 3,7-O-diglucose.

Biosynthesis of Three Chalcone β-D-glucosides by Glycosyltransferase from Bacillus subtilis ATCC 6633

  • Fei, Yinuo;Shao, Yan;Wang, Weiwei;Cheng, Yatian;Yu, Boyang;He, Xiaorong;Zhang, Jian
    • 한국미생물·생명공학회지
    • /
    • 제49권2호
    • /
    • pp.174-180
    • /
    • 2021
  • Chalcones exhibit multiple biological activities. Various studies have attempted to modify the structure of chalcones with a special focus on the addition of substituents to the benzene rings. However, these chemical modifications did not improve the water solubility and bioavailability of chalcones. Glycosylation can markedly affect the physical and chemical properties of hydrophobic compounds. Here, we evaluated the ability of a highly promiscuous glycosyltransferase (GT) BsGT1 from Bacillus subtilis ATCC 6633 to biosynthesize chalcone glucosides. Purified BsGT1 catalyzed the conversion of 4'-hydroxychalcone (compound 1), 4'-hydroxy-4-methylchalcone (compound 2), and 4-hydroxy-4'-methoxychalcone (compound 3), into chalcone 4'-O-β-D-glucoside (compound 1a), 4-methylchalcone 4'-O-β-D-glucoside (compound 2a), and 4'-methoxychalcone 4-O-β-D-glucoside (compound 3a), respectively. To avoid the addition of expensive uridine diphosphate glucose (UDP-Glc), a whole-cell biotransformation system was employed to provide a natural intracellular environment for in situ co-factor regeneration. The yields of compounds 1a, 2a, and 3a were as high as 90.38%, 100% and 74.79%, respectively. The successful co-expression of BsGT1 with phosphoglucomutase (PGM) and UDP-Glc pyrophosphorylase (GalU), which are involved in the biosynthetic pathway of UDP-Glc, further improved the conversion rates of chalcones (the yields of compounds 1a and 3a increased by approximately 10%). In conclusion, we demonstrated an effective whole-cell biocatalytic system for the enzymatic biosynthesis of chalcone β-D-glucoside derivatives.

Stepwise Synthesis of Quercetin Bisglycosides Using Engineered Escherichia coli

  • Choi, Gyu Sik;Kim, Hyeon Jeong;Kim, Eun Ji;Lee, Su Jin;Lee, Youngshim;Ahn, Joong-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • 제28권11호
    • /
    • pp.1859-1864
    • /
    • 2018
  • Synthesis of flavonoid glycoside is difficult due to diverse hydroxy groups in flavonoids and sugars. As such, enzymatic synthesis or biotransformation is an approach to solve this problem. In this report, we used stepwise biotransformation to synthesize two quercetin bisglycosides (quercetin 3-O-glucuronic acid 7-O-rhamnoside [Q-GR] and quercetin 3-O-arabinose 7-O-rhamnoside [Q-AR]) because quercetin O-rhamnosides contain antiviral activity. Two sequential enzymatic reactions were required to synthesize these flavonoid glycosides. We first synthesized quercetin 3-O-glucuronic acid [Q-G], and quercetin 3-O-arabinose [Q-A] from quercetin using E. coli harboring specific uridine diphopsphate glycosyltransferase (UGT) and genes for UDP-glucuronic acid and UDP-arabinose, respectively. With each quercetin 3-O-glycoside, rhamnosylation using E. coli harboring UGT and the gene for UDP-rhamnose was conducted. This approach resulted in the production of 44.8 mg/l Q-GR and 45.1 mg/l Q-AR. This stepwise synthesis could be applicable to synthesize various natural product derivatives in case that the final yield of product was low due to the multistep reaction in one cell or when sequential synthesis is necessary in order to reduce the synthesis of byproducts.

Suppression of UDP-glycosyltransferase-coding Arabidopsis thaliana UGT74E2 Gene Expression Leads to Increased Resistance to Psuedomonas syringae pv. tomato DC3000 Infection

  • Park, Hyo-Jun;Kwon, Chang-Seob;Woo, Joo-Yong;Lee, Gil-Je;Kim, Young-Jin;Paek, Kyung-Hee
    • The Plant Pathology Journal
    • /
    • 제27권2호
    • /
    • pp.170-182
    • /
    • 2011
  • Plants possess multiple resistance mechanisms that protect themselves against pathogen attack. To identify unknown components of the defense machinery in Arabidopsis, gene-expression changes were monitored in Arabidopsis thaliana under 18 different biotic or abiotic conditions using a DNA microarray representing approximately 25% of all Arabidopsis thaliana genes (www.genevestigator.com). Seventeen genes which are early responsive to salicylic acid (SA) treatment as well as pathogen infection were selected and their T-DNA insertion mutants were obtained from SALK institute. To elucidate the role of each gene in defense response, bacterial pathogen Pseudomonas syringae pv. tomato (Pst) DC3000 was inoculated onto individual T-DNA insertion mutants. Four mutants exhibited decreased resistance and five mutants displayed significantly enhanced resistance against Pst DC3000-infection as measured by change in symptom development as compared to wild-type plants. Among them, member of uridin diphosphate (UDP)-glycosyltransferase (UGT) was of particular interest, since a UGT mutant (At1g05680) showed enhanced resistance to Pst-infection in Arabidopsis. In systemic acquired resistance (SAR) assay, this mutant showed enhanced activation of SAR. Also, the enhanced SAR correlated with increased expression of defense-related gene, AtPR1. These results emphasize that the glycosylation of UGT74E2 is a part of the SA-mediated disease-resistance mechanism.

Exploring the Nucleophilic N- and S-Glycosylation Capacity of Bacillus licheniformis YjiC Enzyme

  • Bashyal, Puspalata;Thapa, Samir Bahadur;Kim, Tae-Su;Pandey, Ramesh Prasad;Sohng, Jae Kyung
    • Journal of Microbiology and Biotechnology
    • /
    • 제30권7호
    • /
    • pp.1092-1096
    • /
    • 2020
  • YjiC, a glycosyltransferase from Bacillus licheniformis, is a well-known versatile enzyme for glycosylation of diverse substrates. Although a number of O-glycosylated products have been produced using YjiC, no report has been updated for nucleophilic N-, S-, and C- glycosylation. Here, we report the additional functional capacity of YjiC for nucleophilic N- and S- glycosylation using a broad substrate spectrum including UDP-α-D-glucose, UDP-N-acetyl glucosamine, UDP-N-acetylgalactosamine, UDP-α-D-glucuronic acid, TDP-α-L-rhamnose, TDP-α-D-viosamine, and GDP-α-L-fucose as donor and various amine and thiol groups containing natural products as acceptor substrates. The results revealed YjiC as a promiscuous enzyme for conjugating diverse sugars at amine and thiol functional groups of small molecules applicable for generating glycofunctionalized chemical diversity libraries. The glycosylated products were analyzed using HPLC and LC/MS and compared with previous reports.

Biological Synthesis of Baicalein Derivatives Using Escherichia coli

  • Han, Da Hye;Lee, Youngshim;Ahn, Joong-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • 제26권11호
    • /
    • pp.1918-1923
    • /
    • 2016
  • Two baicalein derivatives, baicalin and oroxylin A, were synthesized in this study. These derivatives exhibit diverse biological activities, such as anxiolytic and anticancer activities as well as memory enhancement. In order to synthesize baicalin from aglycon baicalein using Escherichia coli, we utilized a glycosyltransferase that regioselectively transfers glucuronic acid from UDP-glucuronic acid to the 7-hydroxy group of baicalein. To increase baicalin productivity, an araA deletion E. coli mutant, which accumulates UDP-glucuronic acid, was used, and ugd, which converts UDP-glucose to UDP-glucuronic acid, was overexpressed. Using these strategies, approximately $720.3{\mu}M$ baicalin was synthesized from $1,000{\mu}M$ baicalein. Oroxylin A was then synthesized from baicalein. Two O-methyltransferases (OMTs), ROMT-15 and POMT-9, were tested to examine the production of oroxylin A from baicalein. E. coli harboring ROMT-15 and E. coli harboring POMT-9 produced reaction products that had different retention times, indicating that they are methylated at different positions; the structure of the reaction product from POMT-9 was consistent with oroxylin A, whereas that from ROMT-15 was 7-O-methyl baicalein. Using E. coli harboring POMT-9, approximately 50.3 mg/l of oroxylin A ($177{\mu}M$) was synthesized from 54 mg/l baicalein ($200{\mu}M$).