• 제목/요약/키워드: UDF

검색결과 35건 처리시간 0.024초

Development of a 3D thermohydraulic-neutronic coupling model for accident analysis in research miniature neutron source reactor (MNSR)

  • Ahmadi, M.;Rabiee, A.;Pirouzmand, A.
    • Nuclear Engineering and Technology
    • /
    • 제51권7호
    • /
    • pp.1776-1783
    • /
    • 2019
  • To accurately analyze the accidents in nuclear reactors, a thermohydraulic-neutronic coupling calculation is required to solve fluid dynamics and nuclear reactor kinetics equations in fine cells simultaneously and evaluate the local effects of neutronic and thermohydraulic parameters on each other. In the present study, a 3D thermohydraulic-neutronic coupling model is developed, validated and then applied for Isfahan MNSR (Miniature Neutron Source reactor) safety analysis. The proposed model is developed using FLUENT software and user defined functions (UDF) are applied to simulate the neutronic behavior of MNSR. The validation of the proposed model is first evaluated using 1mk reactivity insertion experiment into Isfahan MNSR core. Then, the developed coupling code is applied for a design basis accident (DBA) scenario analysis with the insertion of maximum allowed cold core reactivity of 4 mk. The results show that the proposed model is able to predict the behavior of the reactor core under normal and accident conditions with a good accuracy.

진동하는 2차원 날개 단면 주위에 대한 점성 유동장 계산( Part 1. 동적실속이 없는 경우 ) (Computation of Viscous Flows around a Two-dimensional Oscillating Airfoil ( Part 1. without Dynamic Stall ))

  • 이평국;김형태
    • 대한조선학회논문집
    • /
    • 제44권1호
    • /
    • pp.8-15
    • /
    • 2007
  • In this paper, numerical calculations are performed to analyze the unsteady flow of NACA airfoil sections. In order to ease the flow computation for the fluid region changing in time, improve the quality of solution and simplify the grid generation for the oscillating foil flow, the computational method adopts a moving and deforming mesh with the multi-block grid topology. The multi-block, structured-unstructured hybrid grid is generated using the commercial meshing software Gridgen V15. The MDM (Moving & Deforming Mesh) and the UDF (User Define function) function of FLUENT 6 are adopted for computing turbulent flows of the foil in pitching motion. Computed unsteady lift and drag forces are compared with experimental data. in general, the characteristics of unsteady lift and drag of the experiments are reproduced well in the numerical analysis.

DPF의 유동특성에 관한 과도해석 연구 (Study on Transient Analysis for Flow Characteristics in DPF)

  • 신동원;윤천석
    • 한국자동차공학회논문집
    • /
    • 제18권1호
    • /
    • pp.131-138
    • /
    • 2010
  • Because real flow of engine exhaust is very hot and highly transient, it may cause thermal and inertial loads on catalyzed filters in DPF. Transient and detailed flow and thermal simulations are necessary in this field. To assess the importance of time dependent phenomena, typical cone-type configuration such as an underbody DPF is selected for steady and transient analysis. User defined functions of FLUENT by sinusoidal inlet velocities are written and integrated with main solver for realistic simulation. Also, 4-cylinder and 6-cylinder engines for 3,000 L class are considered for the dynamic exhaust effect of engine type. Key parameters to understanding of catalyst performance and durability issues such as flow uniformity index and peak velocity are investigated. Also, pressure drop for engine power are considered. From the simulation results for three different cases, proper approach is recommended.

Analysis of the performances of the CFD schemes used for coupling computation

  • Chen, Guangliang;Jiang, Hongwei;Kang, Huilun;Ma, Rui;Li, Lei;Yu, Yang;Li, Xiaochang
    • Nuclear Engineering and Technology
    • /
    • 제53권7호
    • /
    • pp.2162-2173
    • /
    • 2021
  • In this paper, the coupling of fine-mesh computational fluid dynamics (CFD) thermal-hydraulics (TH) code and neutronics code is achieved using the Ansys Fluent User Defined Function (UDF) for code development, including parallel meshing mapping, data computation, and data transfer. Also, some CFD schemes are designed for mesh mapping and data transfer to guarantee physical conservation in the coupling computation. Because there is no rigorous research that gives robust guidance on the various CFD schemes that must be obtained before the fine-mesh coupling computation, this work presents a quantitative analysis of the CFD meshing and mapping schemes to improve the accuracy of the value and location of key physical prediction. Furthermore, the effect of the sub-pin scale coupling computation is also studied. It is observed that even the pin-resolved coupling computation can also create a large deviation in the maximum value and spatial locations, which also proves the significance of the research on mesh mapping and data transfer for CFD code in a coupling computation.

고령친화식품의 정책 및 산업기술 동향 (Policies and industrial technology trends for senior-friendly foods)

  • 이현순;남영주;김양은;김종찬;신윤정;이영진;허완
    • 식품과학과 산업
    • /
    • 제53권4호
    • /
    • pp.435-443
    • /
    • 2020
  • Korea has entered into an aged-society in 2018. If this trend continues to increase, it is expected that a super-aging society will take place by 2026. Therefore, Korea is placed in the situation of becoming the world's fastest aging nation as it becomes a super-aging society from an aged-society in twenty-six years. In order to provide an effective supply of nutrition for the socially weak, Japan developed a variety of foods with food texture improvements. Germany improved accessibility for meal service development. Senior-friendly food is a softened food or a highly concentrated drink, which is considered a texture-modified food, for the elderly with eating disorders to digest food more easily by making food particles smaller. Varying food processing techniques such as freeze-thawing enzyme impregnation, high-pressure processing, super-heated steam processing, 3D food print, and others used to produce texture-modified foods.

Thermo-hydrodynamic investigation into the effects of minichannel configuration on the thermal performance of subcooled flow boiling

  • Amal Igaadi;Rachid El Amraoui;Hicham El Mghari
    • Nuclear Engineering and Technology
    • /
    • 제56권1호
    • /
    • pp.265-274
    • /
    • 2024
  • The current research focuses on the development of a numerical approach to forecast strongly subcooled flow boiling of FC-72 as the refrigerant in various vertical minichannel shapes for high-heat-flux cooling applications. The simulations are carried out using the Volume of Fluid method with the Lee phase change model, which revealed some inherent flaws in multiphase flows that are primarily due to an insufficient interpretation of shearlift force on bubbles and conjugate heat transfer against the walls. A user-defined function (UDF) is used to provide specific information about this noticeable effect. The influence of shape and the inlet mass fluxes on the flow patterns, heat transfer, and pressure drop characteristics are discussed. The computational results are validated with experimental measurements, where excellent agreements are found that prove the efficiency of the present numerical model. The findings demonstrate that the heat transfer coefficient decreases as the mass flux increases and that the constriction design improves the thermal performance by 24.68% and 10.45% compared to the straight and expansion shapes, respectively. The periodic constriction sections ensure good mixing between the core and near-wall layers. In addition, a slight pressure drop penalty versus the thermal transfer benefits for the two configurations proposed is reported.

2중 실린더 구조를 갖는 인장 가스스프링의 마찰력 변화에 따른 피스톤 거동에 대한 연구 (A study on the behavior of the piston with varying friction force in the double cylinder-typed extension gas spring)

  • 정남균
    • 한국산학기술학회논문지
    • /
    • 제19권2호
    • /
    • pp.9-14
    • /
    • 2018
  • 가스스프링은 가스가 압축될 때 가지게 되는 압력을 스프링과 같이 사용하는 형태로, 광범위한 산업분야에 사용되고 있고 그 수요 또한 증가하고 있다. 이 가스스프링은 압축 스프링과 인장 스프링으로 나뉠 수 가 있는데, 압축 스프링과 달리인장 스프링의 경우는 피스톤 속도 제어에 대한 연구가 많이 이루어지지 않았다. 본 연구에서는 2중 실린더 구조를 갖는 인장 가스스프링에서의 압력 손실 계산을 통하여 피스톤 반발압력의 크기를 이론적으로 예측하였고, 피스톤과 실린더 사이의 마찰이 작은 경우와 큰 경우에 대하여 피스톤의 실제 거동을 모사해 보았다. 수치해석을 위해서는 유동해석분야에서 가장 널리 사용되고 있는 FLUENT를 이용하였고, 피스톤의 거동을 모사하기 위하여 FLUENT에서 제공하는 6-DOF 모델과 사용자정의함수(User Defined Function)를 사용하였다. 격자는 Layering 기법만으로도 Dynamic mesh가 성공적으로 구현되도록 피스톤 전후의 유동영역을 따로 분할하여 다른 형태의 격자를 생성하였다. 해석 결과 두 경우 다 최종적으로는 목표로 하는 속도로 피스톤이 복귀하는 결과를 보였으나, 최종 속도에 도달하는 과정에서 다른 차이를 보였다.

임베디드 시스템의 객체 관계형 DBMS에 적합한 공간 인덱스 방법 비교 연구 (Comparison research of the Spatial Indexing Methods for ORDBMS in Embedded Systems)

  • 이민우;박수홍
    • 한국지리정보학회지
    • /
    • 제8권1호
    • /
    • pp.63-74
    • /
    • 2005
  • 차량 및 교통 분야의 대표적인 임베디드 시스템인 텔레매틱스 단말기는 대용량의 공간 데이터를 실시간으로 처리하기 위해서 RTOS(Real Time Operating System) 기반의 공간 DBMS를 요구하고 있다. 이러한 공간 DBMS는 기존의 ORDBMS의 사용자 정의 타입과 사용자 정의 함수라는 표준적인 기능을 이용하여 쉽게 확장 개발할 수 있지만, 공간 인덱스의 경우 SQL3에서 표준적인 개발 방법을 제공하지 않기 때문에, 임베디드 시스템과 같은 환경에서 공간 인덱스를 개발하는 것은 어려운 실정이다. 본 연구에서는 현재 ORDBMS에서 사용자 정의 인덱스를 개발할 수 있는 방법으로 제안되고 있는 Generalized Search Tree 방법과 Relational Indexing 방법을 비교 분석하고 각 방법에 대해 R-트리의 구현 및 영역 질의에 대한 실험을 통해 임베디드 시스템 환경에 적합한 공간 인덱스 방법을 제안하였다.

  • PDF

LES of wind environments in urban residential areas based on an inflow turbulence generating approach

  • Shen, Lian;Han, Yan;Cai, C.S.;Dong, Guochao;Zhang, Jianren;Hu, Peng
    • Wind and Structures
    • /
    • 제24권1호
    • /
    • pp.1-24
    • /
    • 2017
  • Wind environment in urban residential areas is an important index to consider when evaluating the living environment. However, due to the complexity of the flow field in residential areas, it is difficult to specify the correct inflow boundary conditions in the large eddy simulation (LES). In this paper, the weighted amplitude wave superposition (WAWS) is adopted to simulate the fluctuating velocity data, which satisfies the desired target wind field. The fluctuating velocity data are given to the inlet boundary of the LES by developing an UDF script, which is implemented into the FLUENT. Then, two numerical models - the empty numerical wind tunnel model and the numerical wind tunnel model with spires and roughness elements are established based on the wind tunnel experiment to verify the present method. Finally, the turbulence generation approach presented in this paper is used to carry out a numerical simulation on the wind environment in an urban residential area in Lisbon. The computational results are compared with the wind tunnel experimental data, showing that the numerical results in the LES have a good agreement with the experimental results, and the simulated flow field with the inlet fluctuations can generate a reasonable turbulent wind field. It also shows that strong wind velocities and turbulent kinetic energy occur at the passageways, which may affect the comfort of people in the residential neighborhood, and the small wind velocities and vortexes appear at the leeward corners of buildings, which may affect the spreading of the pollutants.

전산유체역학 기법을 이용한 공기연령 산정 방법의 개발 (Development of Straightforward Method of Estimating LMA and LMR using Computational Fluid Dynamics Technology)

  • 박세준;이인복;홍세운;권경석;하태환;윤남규;김형권;권순홍
    • 한국농공학회논문집
    • /
    • 제55권6호
    • /
    • pp.135-144
    • /
    • 2013
  • Ventilation efficiency has an important role in agricultural facilities such as greenhouse and livestock house to keep internally optimum environmental condition. Age-of-air concept allows to assess the ventilation efficiency of an agricultural facility according to estimating the ability of fresh air supply and contaminants emission using LMA and LMR. Most of these methods use a tracer gas method which has some limitations in experiment like dealing unstable and invisible gas. Therefore, the aim of this study was to develop a straightforward method to calculate age-of-air values with CFD simulation which has the advantage of saving computational time and resources and these method can solve the limitations in experiment using tracer gas method. The main idea of LMA computation is to solve the passive scalar transport equation with the assumption that the production of the time scalar throughout the room is uniform. In case of LMR calculation, the transport of the time scalar was reversed compulsively using UDF. The methodology to validate the results of this study was established by comparing with preceding research that had performed a computing LMA and LMR value by laboratory experiments and CFD simulations using tracer gas. As a result, the error was presented similarly level of results of preceding research. Some big errors could be caused by stagnated area and incongruity turbulence model. while the computational time was reduced to almost one fourth of that by preceding research.