Browse > Article
http://dx.doi.org/10.1016/j.net.2021.01.006

Analysis of the performances of the CFD schemes used for coupling computation  

Chen, Guangliang (Fundamental Science on Nuclear Safety and Simulation Technology Laboratory, Harbin Engineering University)
Jiang, Hongwei (Fundamental Science on Nuclear Safety and Simulation Technology Laboratory, Harbin Engineering University)
Kang, Huilun (Fundamental Science on Nuclear Safety and Simulation Technology Laboratory, Harbin Engineering University)
Ma, Rui (China Ship Development and Design Center)
Li, Lei (Fundamental Science on Nuclear Safety and Simulation Technology Laboratory, Harbin Engineering University)
Yu, Yang (Nuclear Power Institute of China)
Li, Xiaochang (Fundamental Science on Nuclear Safety and Simulation Technology Laboratory, Harbin Engineering University)
Publication Information
Nuclear Engineering and Technology / v.53, no.7, 2021 , pp. 2162-2173 More about this Journal
Abstract
In this paper, the coupling of fine-mesh computational fluid dynamics (CFD) thermal-hydraulics (TH) code and neutronics code is achieved using the Ansys Fluent User Defined Function (UDF) for code development, including parallel meshing mapping, data computation, and data transfer. Also, some CFD schemes are designed for mesh mapping and data transfer to guarantee physical conservation in the coupling computation. Because there is no rigorous research that gives robust guidance on the various CFD schemes that must be obtained before the fine-mesh coupling computation, this work presents a quantitative analysis of the CFD meshing and mapping schemes to improve the accuracy of the value and location of key physical prediction. Furthermore, the effect of the sub-pin scale coupling computation is also studied. It is observed that even the pin-resolved coupling computation can also create a large deviation in the maximum value and spatial locations, which also proves the significance of the research on mesh mapping and data transfer for CFD code in a coupling computation.
Keywords
Thermal hydraulics; CFD schemes; PWR;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. Leppanen, V. Hovi, T. Ikonen, J. Kurki, M. Pusa, V. Valtavirta, T. Viitanen, The numerical multi-physics project (NUMPS) at VTT technical research centre of Finland, Ann. Nucl. Energy 84 (2015) 5-62.
2 G. Chen, Z. Zhang, Z. Tian, T. Appah, L. Li, X. Dong, P. Hu, Research on the subchannel analysis method via CFD analysis for PWR, Nucl. Sci. Eng. 18 (2017a) 270-281.
3 H. Yu, M. Wang, R. Cai, D. Zhang, W. Tian, S. Qiu, G.H. Su, Development and validation of boron diffusion model in nuclear reactor core subchannel analysis, Ann. Nucl. Energy 130 (2019) 208-217.   DOI
4 G. Chen, Z. Zhang, Z. Tian, L. Li, X. Dong, Challenge analysis and schemes design for the CFD simulation of PWR, Sci. Technol. Nucl. Install. (2017b) 1-15, 2017.
5 G. Chen, J. Wang, Z. Zhang, Z. Tian, L. Li, H. Kang, Y. Jin, Distributed-parallel CFD computation for all fuel assemblies in PWR core, Ann. Nucl. Energy 141 (2020) 107340.   DOI
6 J. Yu, S. Wang, X. Zhang, W. Mao, Numerical simulation on scathe less measurement of helium pressure in fuel rod, Chin. J. Nucl. Sci. Eng. 27 (3) (2007) 193-197.   DOI
7 H. Kang, Z. Tian, L. Li, G. Chen, Y. Jin, Development of a coupled neutronics and thermal hydraulics code with an advanced spatial mapping mode, in: 27th International Conference on Nuclear Engineering, 2019. May 19-24, 2019, Ibaraki, Japan.
8 J. Zhu, J. Shan, B. Zhang, Chinese Book of Operation of PWR Nuclear Power Plants, second ed., Atomic energy press, Beijing, China, 2008, p. 17.
9 Q. Ren, X. Yang, Z. Huang, J. Wang, Thermophysical property of working fluid of high temperature gas-cooled reactor helium gas turbine cycle, Chin. J. Turbine Technol. 48 (2) (2006) 93-94, 126.
10 X. Zhang, G. Li, L. Shi, Chinese Book of Thermal Fundamentals, second ed., Chinese higher education press, Beijing, China, 2006, p. 390.
11 J. Wang, W.X. Tian, Y.H. Tian, G.H. Su, S.Z. Qiu, A sub-channel analysis code for advanced lead bismuth fast reactor, Prog. Nucl. Energy 63 (2013) 34-48.   DOI
12 Y. Ma, S. Liu, Z. Luo, S. Huang, K. Li, K. Wang, G. Yu, H. Yu, RMC/CTF multi-physics solutions to VERA core physics benchmark problem 9, Ann. Nucl. Energy 133 (2019) 837-852.   DOI
13 A.M. Ward, M. Wang, M.D. Neumann, M. Memmott, A. Manera, T.J. Downar, Simulated transient behavior of the I2S reactor design, Ann. Nucl. Energy 145 (2020) 105421.   DOI
14 M. Daeubler, A. Ivanov, B.L. Sjenitzer, V. Sanchez, R. Stieglitz, R. Macian-Juan, High-fidelity coupled Monte Carlo neutron transport and thermal-hydraulics simulations using Serpent 2/SUBCHANFLOW, Ann. Nucl. Energy 83 (2015a) 352-375.   DOI
15 M. Daeubler, N. Trost, J. Jimenez, V. Sanchez, R. Stieglitz, R. Macian-Juan, Static and transient pin-by-pin simulations of a full PWR core with the extended coupled code system DYNSUB, Ann. Nucl. Energy 84 (2015b) 31-44.   DOI
16 J. Ge, D. Zhang, W. Tian, K. Wang, S. Qiu, G.H. Su, Steady and transient solutions of neutronics problems based on finite volume method (FVM) with a CFD code, Prog. Nucl. Energy 85 (2015) 366-374.   DOI
17 V. Vasconcelos, A. Santos, D. Campolina, G. Theler, C. Pereira, Coupled unstructured fine-mesh neutronics and thermal-hydraulics methodology using open software: a proof-of-concept, Ann. Nucl. Energy 115 (2018) 173-185.   DOI
18 M. Aufiero, M. Fratoni, A new approach to the stabilization and convergence acceleration in coupled Monte Carloe CFD calculations: the Newton method via Monte Carlo perturbation theory, Nucl. Eng. Technol. 49 (2017) 1181-1188.   DOI
19 R. Henry, I. Tiselj, L. Snoj, CFD/Monte-Carlo neutron transport coupling scheme, application to TRIGA reactor, Ann. Nucl. Energy 110 (2017) 36-47.   DOI