• Title/Summary/Keyword: UBM

Search Result 185, Processing Time 0.023 seconds

Comparison of Shear Strength and Shear Energy for 48Sn-52In Solder Bumps with Variation of Reflow Conditions (리플로우 조건에 따른 Sn-52In 솔더범프의 전단응력과 전단에너지 비교)

  • Choi Jae-Hoon;Oh Tae-Sung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.12 no.4 s.37
    • /
    • pp.351-357
    • /
    • 2005
  • Comparison of shear strength and shear energy of the 48Sn-52In solder bumps reflowed on Cu UBM were made with variations of reflow temperature from $150^{\circ}C$ to $250^{\circ}C$ and reflow time from 1 min to 20 min to establish an evaluation method for the mechanical reliability of solder bumps. Compared to the shear strength, the shear energy of the Sn-52In solder bumps was much more consistent with the solder reaction behavior and the fracture mode at the Sn-52In/Cu interface, indicating that the bump shear energy can be used as an effective tool to evaluate the mechanical integrity of solder/UBM interface.

  • PDF

Unbalance Magnetron 스퍼터링 소스의 특성

  • 정재인;박형국;박성렬;이석연;염승호
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.134-134
    • /
    • 1999
  • 스퍼터링 소스는 전자기 박막 등 기능성 박막을 비롯하여 결질피막, 장식성 피막등의 제조에 이용되는 것으로 각종 증발원 중에서 가장 널리 사용되는 증발원이다. 70년대 이후 스퍼터링 소스는 마그네트론 스퍼터링으로 대표되는 방식이 사용되어 왔으며 지금까지도 가장 일반적인 방식이 되어 왔다. 마그네트론 스퍼터링 증발원은 증발율에서는 기술적인 향상이 이루어진 반면 이온화율의 향상은 그다지 이루어지지 않아 경질피막과 같은 화합물 피막의 특성 향상에는 한계를 드러내게 되었다. 그러다가 186년 Window 등 이 자장의 세기를 변형시킨 비평형 마그네트론 소스(Unbalanced Magnetron;UBM)를 처음 발표하여 이온화율의 향상이 가능하다는 것이 알려지면서 이에 대한 많은 연구가 진행되었다. UBM 소스는 마그네트론 스퍼터링 소스의 외부에 전자석을 설치하여 기판에 흐르는 이온의 양을 증가시킴으로써 소스와 기판사이의 거리를 증가시킬 수 있고 따라서, 복잡한 형상의 부품코팅이 가능하며 피막 특성을 향상시킬 수 있는 장점이 있다. 본 연구에서는 UBM 스퍼터링 소스를 설계, 제작하여 그 특성을 다양한 측면에서 조사하였다. 특히, 자작의 최적 설계를 통해 전자석의 조건을 도출하였음, Dual UBM 소스의 특성을 동시에 조사하였다. 자기장의 simulation에는 Quick field 프로그램을 이용하였고 기존의 방식과의 비교를 통해 최적의 조건을 도출하였다. 이를 바탕으로 inner pole의 크기를 30mm, outer pole의 크기를 26mm로 고정하여 설계하였고, 외부에 전자석이 설치된 UBM 소스를 제작하였다. 본 UBM 소스는 4" 타겟을 사용할 수 있으며 전자석의 조건을 10A까지 변화시켜 자기장의 세기를 변화시킬 수 있게 하였다. 제작된 소스의 동작조건 설정과 최적화를 위한 스퍼터링 장치를 함께 제작하여 UBM 소스의 최적 동작 조건을 도출하였다. 전자석의 전류가 4.5A일 때 Inner Pole과 Outer Pole의 자기장의 세기가 도일함을 알 수 있었다. 기판과 타겟의 거리가 200mm일 경우에 기판에 흐르는 전류밀도는 2mA/cm2이상이 됨을 확인하였다. 이 결과는 기존의 마그네트론 소스가 기판과 타겟사이의 거리가 100mm일 때 1mA/cm2 정도가 되는 것과 비교하면 이온화율이 획기적으로 향상된 것임을 알 수 있다.수 있다.

  • PDF

Interfacial Reaction between Ultra-Small 58Bi-42Sn Solder Bump and Au/Ni/Ti UBM for Ultra-Fine Flip Chip Application (고집적 플립 칩용 극미세 58Bi-42Sn 솔더 범프와 Au/Ni/Ti UBM의 계면 반응)

  • Kang, Woon-Byung;Jung, Yoon;Kim, Young-Ho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.10 no.2
    • /
    • pp.61-67
    • /
    • 2003
  • The interfacial reaction between ultra-small 58Bi-42Sn solder and Au/Ni/Ti under bump metallurgy (UBM) for ultra-fine flip chip application was investigated. The ultra-small 58Bi-42Sn solder bump, about $46{\mu}m$ in diameter, was fabricated by using the lift-off method and reflowed using the rapid thermal annealing (RTA) system. The intermetallic compounds were characterized using a secondary electron microscopy (SEM), an energy dispersive spectroscopy (EDS), and an x-ray diffractometer (XRD). The faceted and polygonal intermetallic compounds were found in the Bi-Sn solder bumps on $Au(0.1{\mu}m)/Ni/Ti$ UBM and they were indentified as $(Au_xBi_yNi_{1-x-y})Sn_2$ Phase. The intermetallic compounds grown from the $Au(0.1{\mu}m)/Ni/Ti$ UBMinterface were dispersed in the solder bump.

  • PDF

The Effects of UBM and SnAgCu Solder on Drop Impact Reliability of Wafer Level Package

  • Kim, Hyun-Ho;Kim, Do-Hyung;Kim, Jong-Bin;Kim, Hee-Jin;Ahn, Jae-Ung;Kang, In-Soo;Lee, Jun-Kyu;Ahn, Hyo-Sok;Kim, Sung-Dong
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.17 no.3
    • /
    • pp.65-69
    • /
    • 2010
  • In this study, we investigated the effects of UBM(Under Bump Metallization) and solder composition on the drop impact reliability of wafer level packaging. Fan-in type WLP chips were prepared with different solder ball composition (Sn3.0Ag0.5Cu, and Sn1.0Ag0.5Cu) and UBM (Cu 10 ${\mu}m$, Cu 5 ${\mu}m$\Ni 3 ${\mu}m$). Drop test was performed up to 200 cycles with 1500G acceleration according to JESD22-B111. Cu\Ni UBM showed better drop performance than Cu UBM, which could be attributed to suppression of IMC formation by Ni diffusion barrier. SAC105 was slightly better than SAC305 in terms of MTTF. Drop failure occurred at board side for Cu UBM and chip side for Cu\Ni UBM, independent of solder composition. Corner and center chip position on the board were found to have the shortest drop lifetime due to stress waves generated from impact.

In-sacco Degradability of Dietary Combinations Formulated with Naturally Fermented Wheat Straw as Sole Roughage

  • Pannu, M.S.;Kaushal, J.R.;Wadhwa, M.;Bakshi, M.P.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.9
    • /
    • pp.1307-1311
    • /
    • 2002
  • Twelve dietary combinations were prepared using 70 parts of fermented wheat straw (FWS) as the sole roughage supplemented with 30 parts of either the low protein concentrate mixture (Conc.-I), high protein concentrate mixture (conc.-II), maize grains (M), solvent extracted mustard cake (DMC), deoiled rice bran (DRB), uromol bran mixture (UBM), deep stacked poultry litter (DSPL), dried poultry droppings (DPD), M-DMC mixture (50:50), M-UBM mixture (50:50), M-DPD mixture (50:50) or M-UBM-DPD mixture (50:25:25) and evaluated by in-sacco technique. The above dietary combinations were also evaluated by changing the roughage to concentrate ratio to 60:40. The digestion kinetics for DM and CP revealed that FWS:DPD had the highest, whereas, the FWS:M-DMC had the lowest rapidly soluble fraction. The potentially degradable fraction was found to be maximum in FWS:M and minimum in FWS:DPD dietary combinations. The higher degradation rate of FWS:DRB and FWS:UBM combinations was responsible for their significantly (p<0.05) higher effective degradability as compared to other combinations. The highest undegradable fraction noted in FWS:M-UBM-DPD followed by FWS:DMC was responsible for high rumen fill values. The FWS:DRB, FWS:UBM and FWS:DPD combinations had higher potential for DM intake. The dietary combination with higher concentrate level (60:40) was responsible for higher potentially degradable fraction, which was degraded at a faster rate resulting in significantly higher effective degradability as compared to the corresponding dietary combination with low concentrate level (70:30). The low undegradable fraction in the high concentrate diet was responsible for low rumen fill values, which predicted of high potential for DM intake. Out of 24 dietary combinations, FWS with either of UBM, DRB, DMC, Maize, M-DMC or DPD in 70:30 ratio supplemented with minerals and vitamin A in comparison to conventional feeding practice (roughage and concentrate mixture) could be exploited as complete feed for different categories of ruminants.

Fluxless Plasma Soldering with Different Thickness of UBM Layers on Si-Wafer (Si 웨이퍼의 UBM층 도금두께에 따른 무플럭스 플라즈마 솔더링)

  • 문준권;강경인;이재식;정재필;주운홍
    • Journal of the Korean institute of surface engineering
    • /
    • v.36 no.5
    • /
    • pp.373-378
    • /
    • 2003
  • With increasing environmental concerns, application of lead-free solder and fluxless soldering process have been taken attention from the electronic packaging industry. Plasma treatment is one of the soldering methods for the fluxless soldering, and it can prevent environmental pollution cased by flux. On this study fluxless soldering process under $Ar-H_2$plasma using lead free solders such as Sn-3.5 wt%Ag, Sn-3.5 wt%Ag-0.7 wt%Cu and Sn-37%Pb for a reference was investigated. As the plasma reflow has higher soldering temperature than normal air reflow, the effects of UBM(Under Bump Metallization) thickness on the interfacial reaction and bonding strength can be critical. Experimental results showed in case of the thin UBM, Au(20 nm)/Cu(0.3 $\mu\textrm{m}$)/Ni(0.4 $\mu\textrm{m}$)/Al(0.4 $\mu\textrm{m}$), shear strength of the soldered joint was relatively low as 19-27㎫, and it's caused by the crack observed along the bonded interface. The crack was believed to be produced by the exhaustion of the thin UBM-layer due to the excessive reaction with solder under plasma. However, in case of thick UBM, Au(20 nm)/Cu(4 $\mu\textrm{m}$)/Ni(4 $\mu\textrm{m}$)/Al(0.4 $\mu\textrm{m}$), the bonded interface was sound without any crack and shear strength gives 32∼42㎫. Thus, by increasing UBM thickness in this study the shear strength can be improved to 50∼70%. Fluxed reflow soldering under hot air was also carried out for a reference, and the shear strength was 48∼52㎫. Consequently the fluxless soldering with plasma showed around 65∼80% as those of fluxed air reflow, and the possibility of the $Ar-H_2$ plasma reflow was evaluated.

Characterization of Chlorella vulgaris Mutants Producing High Chlorophyll (클로로필 고생산성 Chlorella vulgaris 변이주의 특성 분석)

  • Park, Hyun-Jin;Kim, Ok Ju;Ha, Ji Min;Choi, Tae O;Lee, Jae-Hwa
    • Microbiology and Biotechnology Letters
    • /
    • v.43 no.3
    • /
    • pp.275-279
    • /
    • 2015
  • Micro-algae are unicellular photosynthetic organisms and produce pigments such as chlorophyll and carotenoid. Chlorella contains a lot of protein and functional components like lipids, chlorophyll and carotenoids. In this study we induced mutants of Chlorella vulgaris (C. vulgaris) through ultraviolet radiation (UV-B) and selected two mutants by pigment (chlorophyll and carotenoids) content. We named the mutants ‘UBM1-2’, ‘UBM2-57’ and they were cultivated for 21-days. Cell growth, dry cell weight, protein content, lipid and pigments content were measured. The results indicated that the mutants displayed slower cell growth, lower dry cell weight and protein content than the wild type. However, for UBM1-2 the lipid content was 21% higher than the wild type. In addition, the mutants’ chlorophyll content was 37% and 89% higher than the wild type and the carotenoids content was 27% and 70% higher than the wild type, respectively.

Fluxless Plasma Soldering of Pb-free Solders on Si-wafer -Effect of Plasma Cleaning - (Si-wafer의 플럭스 리스 플라즈마 무연 솔더링 -플라즈마 클리닝의 영향-)

  • 문준권;김정모;정재필
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.11 no.1
    • /
    • pp.77-85
    • /
    • 2004
  • To evaluate the effect of plasma cleaning on the soldering reliability the plasma cleaning using Ar-10vol%$H_2$ gas was applied on a UBM(Under Bump Metallization). The UBM consisted of Au/ Cu/ Ni/ Al layers which were deposited on a Si-wafer with 20 nm/ 4 $\mu\textrm{m}$/ 4 $\mu\textrm{m}$/ 0.4 $\mu\textrm{m}$ thickness respectively. Sn-3.5%Ag, Sn-3.5%Ag-0.7%Cu and Sn-37%Pb solder balls sized of 500 $\mu\textrm{m}$ in diameter were used. Solder balls on the UBM were plasma reflowed under Ar-10%$H_2$ plasma (with or without plasma cleaning). They were compared with air reflowed solder balls with flux. The spreading ratios of plasma reflowed solder with plasma cleaning was 20-40% higher than that of plasma reflowed solder without plasma cleaning. The shear strength of plasma reflowed solder with plasma cleaning was about 58-65MPa. It showed 60-80% higher than that of plasma reflowed solder without plasma cleaning and 15-35% higher than that of air reflowed solder. Thus it was believed that plasma cleaning for the UBM using Ar-10vol%$H_2$ gas was considerably effective for the improvement of the strength of solder ball.

  • PDF

An Analysis on the Thermal Shock Characteristics of Pb-free Solder Joints and UBM in Flip Chip Packages (플립칩 패키지에서 무연 솔더 조인트 및 UBM의 열충격 특성 해석)

  • Shin, Ki-Hoon;Kim, Hyoung-Tae;Jang, Dong-Young
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.5
    • /
    • pp.134-139
    • /
    • 2007
  • This paper presents a computer-based analysis on the thermal shock characteristics of Pb-free solder joints and UBM in flip chip assemblies. Among four types of popular UBM systems, TiW/Cu system with 95.5Sn-3.9Ag-0.6Cu solder joints was chosen for simulation. A simple 3D finite element model was first created only including silicon die, mixture between underfill and solder joints, and substrate. The displacements due to CTE mismatch between silicon die and substrate was then obtained through FE analysis. Finally, the obtained displacements were applied as mechanical loads to the whole 2D FE model and the characteristics of flip chip assemblies were analyzed. In addition, based on the hyperbolic sine law, the accumulated creep strain of Pb-free solder joints was calculated to predict the fatigue life of flip chip assemblies under thermal shock environments. The proposed method for fatigue life prediction will be evaluated through the cross check of the test results in the future work.