• Title/Summary/Keyword: UAV flight test

Search Result 157, Processing Time 0.022 seconds

FLOW CONTROL OF SMART UAV AIRFOIL USING SYNTHETIC JET (Synthetic jet을 이용한 스마트 무인기 익형 주위의 유동 제어)

  • Kim, Min-Hee;Kim, Sang-Hoon;Kim, Woo-Re;Kim, Chong-Am;Kim, Yu-Shin
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.43-50
    • /
    • 2009
  • In order to reduce the download around Smart UAV(SUAV) at hovering and transition mode, flow control using synthetic jet has been performed. Many of the complex tilt rotor flow features are captured including wing leading and trailing edge separation, and the large region of separated flow beneath the wing. First, in order to control the trailing edge separation, synthetic jet is located at 30, 95% of flap chord length. The flow control using synthetic jet on flap shows that stall characteristics depending on several mode can be improved through separation vortices resizing. Also, a flap jet and a 0.01c jet which control the separation efficiently are applied at the same time at each test case because controlling the leading edge separation is essential for download reduction. As a result, time averaged download is reduced about 18% comparing with no control case at hovering mode and 48% at transition mode. These research results show that if flow control using leading edge jet and trailing edge jet is used effectively to the SUAV in overall flight mode, flight performance and stability can be improved.

  • PDF

Implementation and Operational Test of ADS-B System in Goheung Aeronautical Center (고흥항공센터 ADS-B 구축 및 운용시험)

  • Yoo, Chang-Sun;Song, Bok-Sub;Cho, Am;Sung, Ki-Jung;Koo, Sam-Ok
    • Aerospace Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.1-9
    • /
    • 2014
  • Goheung aeronautical center is located in the area of Goheung of which land is reclaimed from sea and has a runway of length 700m, width 25m with test facility which has been used for flight test of UAV and small aircraft. To support the enhancement of aircraft safety, 1090ES ADS-B ground system as the ground surveillance system has been implemented. ADS-B system based on GPS and digital data link provides the function of enhancing the aircraft safety through flight information among aircrafts. This paper gives the result that the implementation of ADS-B ground system and the flight test with onboard ADS-B transmitter has been conducted.

A Study on Noise Certification Evaluation of Hybrid VTOL UAV by Wind Tunnel Test and Flight Test (풍동실험 및 비행시험을 통한 복합형 VTOL 무인기 소음인증 평가에 대한 연구)

  • Ryi, Jaeha;Choi, Jong-Soo
    • Journal of Aerospace System Engineering
    • /
    • v.14 no.spc
    • /
    • pp.39-48
    • /
    • 2020
  • This paper deals with the process of estimating the environmental noise generated from the actual flying aircraft using the noise measurement results obtained through the wind tunnel test and verifying it through flight tests. In order to evaluate the environmental noise of an aircraft, noise tests and evaluations are generally conducted according to the procedures prescribed by the International Civil Aviation Organization (ICAO). In this paper, we introduced environmental noise evaluation method that can be applied to composite both fixed-wing aircraft and multi-copter, and introduced the evaluation method by experiment. This paper introduces the process of simulating the noise test results measured in the wind tunnel test using real flight test results. In addition, in consideration of flight operating conditions and noise measurement methods proposed by the ICAO, the effective perceived noise level (EPNL) was predicted by performing both the wind tunnel test and the aircraft flight test.

Feasibility Study on the Methodology of Test and Evaluation for UAV Positioning (무인항공기 위치정확도 시험평가 기법 연구)

  • Ju, Yo-han;Moon, Kyung-kwan;Kang, Bong-seok;Jeong, Jae-won;Son, Han-gi;Cho, Jeong-hyun
    • Journal of Advanced Navigation Technology
    • /
    • v.22 no.6
    • /
    • pp.530-536
    • /
    • 2018
  • Recently, many studies for interoperability of UAV in the NAS has been performed since the application range and demand of UAV are continuously increased. For the interoperation of UAV in the NAS, technical standards and certification system for UAV which is equivalent to the commercial aircraft are required and test and evaluation methodology must be presented by standards. In this paper, qualification test and evaluation methodology aboutfor the UAV navigation system is proposed. For the research, the mission profile and operation environment of UAV were analyzed. Thereafter the test criteria were derived and the test methodology were established. Finally, the simulation and demonstration using test-bed UAV were performed. As a result of the test, it was confirmed that the navigation system of test UAV has a position accuracy about 1.4 meters at 95% confidence level in the entire flight stage.

Implementation and Application of the Control Surface Deflection Angle measuring device for UAV using Potentiometer (전위차계를 이용한 무인항공기 조종면 변위 측정 장치 구현 및 적용)

  • Kim, Ji-Chul;Choi, Il-Gyu;Gong, Sung-Chul;Cheon, Dong-Ik;Lee, Sangchul;Oh, Hwa-Suk;Kang, Min-young
    • Journal of Aerospace System Engineering
    • /
    • v.3 no.3
    • /
    • pp.13-16
    • /
    • 2009
  • Aircraft flight control surfaces which are one of the most important elements of safety allow a pilot to adjust and control the aircraft's flight attitude. This paper is described of the control surface deflection angle measuring device. Data analysis through ground test and flight test can provide reliability of this device using the present system. It is also shown that measuring system is capable of detecting failure of control surfaces.

  • PDF

Development of an ACMI Simulator Based on LVC Integrating Architecture (LVC 통합 아키텍처 기반 실기동급 ACMI 모의기 개발)

  • Jang, Youngchan;Oh, Jihyun;Myung, Hyunsam;Kim, Cheonyoung;Hong, Youngseok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.6
    • /
    • pp.540-547
    • /
    • 2015
  • This paper describes development contents and flight tests of an ACMI simulator based on LVC integrating architecture. ACMI is the system that provides air combat training and ground bombing training for improving fighting efficiency, that is the live simulation involving real people to operate real systems. ACMI simulator was developed for technic acquisition of LVC interoperability by using data link communication. ACMI simulator simulated maneuvering of a fighter by operating an UAV, a fighter can be distinguished from an UAV by maneuvering characteristics. This study proposes maneuvering simulation method by using flight data of the UAV, and performed its flight test for verifying similarity of fighter maneuvering.

UAV Auto Pilot System Development with GPS & Infrared Heat sensor (GPS와 적외선 열 센서를 이용한 무인항공기 자동비행 시스템 개발)

  • Choi, Jin-Won;Moon, Jung-Ho;Park, Wook-Je;Chang, Jae-Won
    • Journal of Advanced Navigation Technology
    • /
    • v.9 no.1
    • /
    • pp.28-33
    • /
    • 2005
  • In this paper, we developed the algorithm to control longitudinal and lateral motion of UAV(Unmanned Aerial Vehicle) with Infrared heat sensors and GPS(Global Positioning System) receiver. UAV was controlled to be flown horizontally and also turned coordinately maintaining the constant altitude. Accomplishing the flight test of UAV sevral times, we were able to develope low price controller to control bank angle for lateral motion, and also pitch angle and altitude for longitudinal motion simultaneously.

  • PDF

Development of System Integration Laboratory for the Verification of UAV Avionics System Requirements (무인기 항공전자시스템 요구도 검증을 위한 통합시험환경 개발)

  • Jo, Young-Wo;Kim, Bong-Gyu;Park, Jae-Sung;Lee, Jae-Uk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.5
    • /
    • pp.446-453
    • /
    • 2012
  • As part of the integration phases in developing a UAV, a System Integration Laboratory (SIL) has been developed to provide integrated test capability for the verification of avionics system requirements. The SIL has realized primary functions that are common in manned aircraft SIL's, and specialized laying stress on test data visualization and test automation under the closed-loop structure of the ground control simulation, aircraft simulation and flight simulation components. Those design results have led to easy and sure verification of lots of complex requirements of the UAV avionics system. The functions and performances of the SIL have been proved in four gradational test steps and checked to operate successfully in aircraft System Integration Test Environment for the integration of UAV ground station and aircraft.

A Study on the Improvement of Air Vehicle Test Equipment(AVTE) stop by UAV Engine noise (UAV 엔진 소음에 의한 비행체점검장비(AVTE) 정지 현상 개선방안 연구)

  • Kang, Ju Hwan;Lim, Da Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.1
    • /
    • pp.90-96
    • /
    • 2020
  • In this era, intelligence is considered a major factor in the defense sector. As a result, securing technology for weapons systems for monitoring and reconnaissance of companies has become inevitable. As a result, UAVs (Unmanned Aerial Vehicles) have been developed and are actively operating around the world if the flight operation of manned aircraft is restricted, such as in environments that are too dangerous, messy or boring for the military to perform directly. The system of unmanned aerial vehicles, which has been researched and developed in Korea, includes Air Vehicle Test Equipment(AVTE). AVTE is equipment that is connected to an UAV to check its status and allows the operator to check its flightability by issuing an operational command to the UAV and verifying that it follows the command values. This study conducts fault finding on the phenomenon where the AVTE has stopped operating due to engine noise during these operations and analyzes the cause in terms of software, hardware and external environment. Present improvement measures according to the cause are analyzed and the results of verifying that the proposed measures can prevent failure are addressed.

Development of Low-Cost Automatic Flight Control System for an Unmanned Target Drone (무인표적기용 저가형 자동비행시스템 개발)

  • Lee, Jang-Ho;Ryu, Hyeok;Kim, Jae-Eun;Ahn, Iee-Ki
    • Journal of Advanced Navigation Technology
    • /
    • v.8 no.1
    • /
    • pp.19-26
    • /
    • 2004
  • This paper deals with the automatic flight control system for an unmanned target drone which is operated by an army as an anti-air gun shooting training. By automation of unmanned target drone that is manually operated by external pilot, pilot can reduce workload and an army can reduce the budget. Most UAVs which are developed until today use high-cost sensors as AHRS and IMU to measure the attitude, but those are contradictory for the reduction of budget. This paper says the development of low-cost automatic flight control system which makes possible of automatic flight with low-cost sensors. We have developed the integrated automatic flight control system by integrating electricity module, switching module, monitoring module and RC receiver as an one module. We also prove the performance of automatic flight control system by flight test.

  • PDF