• Title/Summary/Keyword: U-10Zr

Search Result 97, Processing Time 0.038 seconds

The Effect of Magnetic Field on Enhancing the Anisotropy of Melt-spun Nd-Fe-Co(-Zr)-B Alloy (급속응고중 외부자장에 의한 Nd-Fe-Co(-Zr)-B계 합금의 자기이방성 향상)

  • Lee, U-Yeong;Choe, Seung-Deok;Yang, Chung-Jin
    • Journal of the Korean Magnetics Society
    • /
    • v.2 no.3
    • /
    • pp.233-238
    • /
    • 1992
  • Melt-spun $Nd_{14}Fe_{76}Co_4B_6$ and $Nd_{10.5}Fe_{79}Co_2Zr_{1.5}B_7$ ribbons were prepared under an externally applied magnetic field. Magnetic properties in terms of anisotropy were evaluated by discussing the effect of textured structure of the ribbon samples as well as its powders. About 32 % increase in $(B{\cdot}H)_{max}$ and 18.8 % increase in $B_r$ were observed along the perpendicular direction of the ribbon plane which is more prominent for the Nd-Fe-Co-Zr-B than for the Nd-Fe-Co-B alloy. The enhancement of magnetic anisotropy was monitored by measuring the anisotropy constant of each alloy as a function of quenching rate of the ribbon. It was found that for the melt-spun ribbon quenched at slow rate(less than 7 m/s) the magnetic field effect was overwhelmed by the heat gradient effect through the ribbon thickness while the field effect was prominent at intermediate quenching rate (more than 7~11 m/s). The reproducible maximum energy product, $(B{\cdot}H)_{max}$=16.4 MGOe can be obtained from the Nd-Fe-Co-Zr-B alloy.

  • PDF

고전환 압력관 모듈형 신형 경수로의 개념 설계

  • 이경훈;김명현
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1998.05a
    • /
    • pp.40-45
    • /
    • 1998
  • Th-232를 Fertile 핵연료로 사용한 압력관형 고전환 경수로심을 설계하였다. 토륨 Blanket은 10년 정도 노내에 위치시키고, 농축 우라늄 Driver는 매년 재장전하도록 설계하였다. Driver로는 $UO_2$핵연료와 U-10%Zr 금속 핵연료를 사용하였고, Blanket으로 이중 탄소 피막 핵원료를 ThO$_2$에 적용한 핵연료를 사용하였다. 핵연료봉의 구조는 울진 3/4호기 핵연료와 같은 재원으로 하였으며 육각형 격자 배열로 집합체를 구성하였다. Seed Bundle을 1년 단위로 교체하고 Blanket Bundled을 5년-10년간 노내에 위치시키는 경우 경수로보다는 높은 전환율 갖는 원자로를 설계할 수 있다.

  • PDF

Effect of Valence Electron Concentration on Elastic Properties of 4d Transition Metal Carbides MC (M = Y, Zr, Nb, and Rh)

  • Kang, Dae-Bok
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.7
    • /
    • pp.2171-2175
    • /
    • 2013
  • The electronic structure and elastic properties of the 4d transition metal carbides MC (M = Y, Zr, Nb, Rh) were studied by means of extended H$\ddot{u}$ckel tight-binding band electronic structure calculations. As the valence electron population of M increases, the bulk modulus of the MC compounds in the rocksalt structure does not increase monotonically. The dominant covalent bonding in these compounds is found to be M-C bonding, which mainly arises from the interaction between M 4d and C 2p orbitals. The bonding characteristics between M and C atoms affecting the variation of the bulk modulus can be understood on the basis of their electronic structure. The increasing bulk modulus from YC to NbC is associated with stronger interactions between M 4d and C 2p orbitals and the successive filling of M 4d-C 2p bonding states. The decreased bulk modulus for RhC is related to the partial occupation of Rh-C antibonding states.

Effect of Vapor Deposition on the Interdiffusion Behavior between the Metallic Fuel and Clad Material (금속연료-피복재 상호확산 거동에 미치는 기상증착법의 영향)

  • Kim, Jun Hwan;Lee, Byoung Oon;Lee, Chan Bock;Jee, Seung Hyun;Yoon, Young Soo
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.7
    • /
    • pp.549-556
    • /
    • 2011
  • This study aimed to evaluate the performance of diffusion barriers in order to prevent fuel-cladding chemical interaction (FCCI) between the metallic fuels and the cladding materials, a potential hazard for nuclear fuel in sodium-cooled fast reactors. In order to prevent FCCI, Zr or V metal is deposited on the ferritic-martensitic stainless steel surface by physical vapor deposition with a thickness up to $5{\mu}m$. The diffusion couple tests using uranium alloy (U-10Zr) and a rare earth metal such as Ce-La alloy and Nd were performed at temperatures between 660~800$^{\circ}C$. Microstructural analysis using SEM was carried out over the coupled specimen. The results show that significant interdiffusion and an associated eutectic reaction ocurred in the specimen without a diffusion barrier. However, with the exception of the local dissolution of the Zr layer in the Ce-La alloy, the specimens deposited with Zr and V exhibited superior eutectic resistance to the uranium alloy and rare earth metal.

A Study on the Alkalimetric Titration with Gran Plot in Noncomplexing Media for the Determination of Free Acid in Spent Fuel Solutions

  • 서무열;이창헌;손세철;김정숙;엄태윤
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.1
    • /
    • pp.59-64
    • /
    • 1999
  • Based on the study of hydrolysis behaviour of U(Ⅵ) ion and major fission product metal ions such as Cs(Ⅰ), Ce(Ⅲ), Nd(Ⅲ), Mo(Ⅵ), Ru(Ⅱ), and ZR(Ⅳ) in the titration media, the performance of noncomplexing-alkalimetric titration method for the determination of free acid in the presence of these metal ions was investigated and its results were compared to those from the completing methods. The free acidities could be determined as low as 0.05 meq in uranium solutions in which the molar ratio of U(Ⅵ)/H+ was less than 5, when the end-point of titration was estimated by Gran plot. The biases in the determinations were less than 1% and about +3% respectively for 0.4 meq and 0.05 meq of free acid at the U(Vl)/H+ molar ratio of up to 5. Applicability of this method to the determination of free acid in spent fuel solutions was confirmed by the analysis of nitric acid content in simulated spent fuel solutions and in a real spent fuel solution.

A way Analyzing Oxide Layer on an Irradiated CANDU-PHWR Pressure Tube Using an EPMA and X-ray Image Mapping

  • Jung, Yang Hong;Kim, Hee Moon
    • Corrosion Science and Technology
    • /
    • v.20 no.3
    • /
    • pp.118-128
    • /
    • 2021
  • The oxide layer in samples taken from an irradiated Zr-2.5Nb pressure tube from a CANDU-PHWR reactor was analyzed using electron probe microanalysis (EPMA). The examined tube had been exposed to temperatures ranging from 264 to 306 ℃ and a neutron fluence of 8.9 × 1021 n/cm2 (E > 1 MeV) for the maximum 10 effective full-power years in a nuclear power plant. Measuring oxide layer thickness generally employs optical microscopy. However, in this study, analysis of the oxide layer from the irradiated pressure tube components was undertaken through X-ray image mapping obtained using EPMA. The oxide layer characteristics were analyzed by X-ray image mapping with 256 × 256 pixels using EPMA. In addition, the slope of the oxide layer was measured for each location. A particular advantage of this study was that backscattered electrons and X-ray image mapping were obtained at a magnification of 9,000 when 20 kV volts and 30 uA of current were applied to radiation-shielded EPMA. The results of this study should usefully contribute to the study of the oxide layer properties of various types of metallic materials irradiated by high radiation in nuclear power plants.

Effect of the New Surface Treatment Method of Zirconia on the Shear Bond Strength with Resin Cement (지르코니아의 새로운 표면처리 방법이 레진 시멘트와의 전단결합강도에 미치는 영향)

  • Cho, Won-Tak;Bae, Ji-Hyeon;Choi, Jae-Won
    • Journal of Digital Convergence
    • /
    • v.19 no.3
    • /
    • pp.245-251
    • /
    • 2021
  • This study was to investigate the effect of the new surface treatment method of zirconia on the shear bond strength with resin cement. The zirconia specimens were classified according to the surface treatment. CON: non-treatment, HF: 10 minutes exposure to 9% HF, ZS15: Apply 15% ZrO2 slurry, ZS30: Apply 30% ZrO2 slurry, ZS50: Apply 50% ZrO2 slurry. The resin cement was layered on the surface treated zirconia, and the shear bond strength between the zirconia and the resin cement was measured after thermo-cycling. The statistical methods for shear bond strength were Kruskal-Wallis test, Mann-Whitney U test, and Bonferroni correction(α=.05/10=.005). ZS15, ZS30, and ZS50 groups treated with zirconia slurry showed higher shear bond strength than CON and HF groups(p<.05/10=.005). Within the limits of this study, the surface treatment using zirconia slurry increased the shear bond strength with resin cement. The new surface treatment method complements and improves the limitations of the adhesion of zirconia, so that various clinical applications of zirconia can be expected.

Geochemical Composition of Volcanic Ash from Historical Eruptions of Mt. Baekdu, Korea (역사시대에 분화한 백두산 화산재의 화학 성분)

  • Yun, Sung-Hyo;Koh, Jeon Seon;Chang, Cheolwoo
    • The Journal of the Petrological Society of Korea
    • /
    • v.27 no.1
    • /
    • pp.37-47
    • /
    • 2018
  • Volcanic ash samples of historical eruptions from Mt. Baekdu were analyzed for major oxides, trace and rare earth elements by a variety of analytical techniques. The results indicate that the ashes consist of approximately 58.8~71.1 wt.% $SiO_2$, 9.6~16.8 wt.% $Al_2O_3$, 4.5~6.9 wt.% $Fe_2O_{3t}$, 0.1~1.7 wt.% MgO, 0.3~1.6 wt.% CaO, 5.2~6.3 wt.% $Na_2O$, 4.3~5.9 wt.% $K_2O$ and less than 1.2 wt.% $TiO_2$. Thirty two trace metals including Ba, Cu, Cr. Co, Ni, Sr, V, Zn, and Zr were analyzed. The ashes can be divided two groups: group A(1 ka Millennium pumice, 1668 and $190{\underline{3}}$ pumice) and group B(1702 pumice) according to the relative enrichment of HREEs. The abundances of heavy metals such as Cu, Co, Mn, and Zn were relatively low. As compared to the Sakurajima volcanic ash, Baekdusan volcanic ash has low concentrations of Y, Nb, Pb, U, Sc, V, Ni and Cu and high concentrations of Zr, Ba, Hf, Cr, Co, Zn and rare-earth (except Eu).

Synthesis and Crystal Structure of $UP_{2}S_{6}$

  • Do, Jung-Hwan;Kim, Jung-Wook;Lah, Sang-Moo;Yun, Ho-Seop
    • Bulletin of the Korean Chemical Society
    • /
    • v.14 no.6
    • /
    • pp.678-681
    • /
    • 1993
  • The new ternary phase $UP_2S_6$ has been prepared and structurally characterized. The compound is isostructural with $ZrP_2S_6$ and $ThP_2S_6$ but is different from $TiP_2S_6$. The structure has been determined by a single crystal X-ray diffraction technique. $UP_2S_6$ crystallizes in the the tetragonal system $({C^2}_{4h}-P4_2/m,\;a=6.797(7)\;{\AA},\;c=9.738(12)\;{\AA})$ with two formula units in the unit cell. The structure can be described in terms of $U^{4+}$ and ${P_2S_6}^{4-}$ ions. This hexathiohypodiphosphate anion $({P_2S_6}^{4-})$ has ideally staggered conformation. The $U^{4+}$ cation is coordinated by 8 sulfur atoms in a slightly distorted dodecahedral geometry (42m). The distribution of sulfur atoms is very well optimized for this geometry.

POST-IRRADIATION ANALYSES OF U-MO DISPERSION FUEL RODS OF KOMO TESTS AT HANARO

  • Ryu, H.J.;Park, J.M.;Jeong, Y.J.;Lee, K.H.;Lee, Y.S.;Kim, C.K.;Kim, Y.S.
    • Nuclear Engineering and Technology
    • /
    • v.45 no.7
    • /
    • pp.847-858
    • /
    • 2013
  • Since 2001, a series of five irradiation test campaigns for atomized U-Mo dispersion fuel rods, KOMO-1, -2, -3, -4, and -5, has been conducted at HANARO (Korea) in order to develop high performance low enriched uranium dispersion fuel for research reactors. The KOMO irradiation tests provided valuable information on the irradiation behavior of U-Mo fuel that results from the distinct fuel design and irradiation conditions of the rod fuel for HANARO. Full size U-Mo dispersion fuel rods of 4-5 $g-U/cm^3$ were irradiated at a maximum linear power of approximately 105 kW/m up to 85% of the initial U-235 depletion burnup without breakaway swelling or fuel cladding failure. Electron probe microanalyses of the irradiated samples showed localized distribution of the silicon that was added in the matrix during fuel fabrication and confirmed its beneficial effect on interaction layer growth during irradiation. The modifications of U-Mo fuel particles by the addition of a ternary alloying element (Ti or Zr), additional protective coatings (silicide or nitride), and the use of larger fuel particles resulted in significantly reduced interaction layers between fuel particles and Al.