DOI QR코드

DOI QR Code

Effect of Vapor Deposition on the Interdiffusion Behavior between the Metallic Fuel and Clad Material

금속연료-피복재 상호확산 거동에 미치는 기상증착법의 영향

  • Kim, Jun Hwan (Next Generation Fuel Development Division, Korea Atomic Energy Research Institute) ;
  • Lee, Byoung Oon (Next Generation Fuel Development Division, Korea Atomic Energy Research Institute) ;
  • Lee, Chan Bock (Next Generation Fuel Development Division, Korea Atomic Energy Research Institute) ;
  • Jee, Seung Hyun (Department of Materials Science and Engineering, Yonsei University) ;
  • Yoon, Young Soo (Department of Materials Science and Engineering, Yonsei University)
  • 김준환 (한국원자력연구원 차세대핵연료기술개발부) ;
  • 이병운 (한국원자력연구원 차세대핵연료기술개발부) ;
  • 이찬복 (한국원자력연구원 차세대핵연료기술개발부) ;
  • 지승현 (연세대학교 신소재공학과) ;
  • 윤영수 (연세대학교 신소재공학과)
  • Received : 2011.01.17
  • Published : 2011.07.25

Abstract

This study aimed to evaluate the performance of diffusion barriers in order to prevent fuel-cladding chemical interaction (FCCI) between the metallic fuels and the cladding materials, a potential hazard for nuclear fuel in sodium-cooled fast reactors. In order to prevent FCCI, Zr or V metal is deposited on the ferritic-martensitic stainless steel surface by physical vapor deposition with a thickness up to $5{\mu}m$. The diffusion couple tests using uranium alloy (U-10Zr) and a rare earth metal such as Ce-La alloy and Nd were performed at temperatures between 660~800$^{\circ}C$. Microstructural analysis using SEM was carried out over the coupled specimen. The results show that significant interdiffusion and an associated eutectic reaction ocurred in the specimen without a diffusion barrier. However, with the exception of the local dissolution of the Zr layer in the Ce-La alloy, the specimens deposited with Zr and V exhibited superior eutectic resistance to the uranium alloy and rare earth metal.

Keywords

Acknowledgement

Grant : 핵연료핵심기반기술 개발

Supported by : 교육과학기술부

References

  1. H. D. Kim and H. S. Lee, Workshop on the Environmental- Frendly SFR Cyclic Fuel Cycle System Development, Seoul, Korea (2010).
  2. J. H. Baek, S. H. Kim, C. B. Lee, and D. H. Hahn, Met. Mater. Int. 15, 565 (2009). https://doi.org/10.1007/s12540-009-0565-y
  3. G. L. Hofman and L. C. Walkers, Metallic fast fuels, in : R. W. Cahn, P. Haasen, E. J. Kramer (Eds.), Material Science and Technology - A Comprehensive Treatment, 10A Part I, VCH, Germany, p. 28 (1994).
  4. G. M. Gordon and R. L. Cowan, U.S. Patent 4,022,662 (1977)
  5. H. J. Ryu, B. O. Lee, S. J. Oh, J. H. Kim, and C. B. Lee, J. Nucl. Mater. 392, 206 (2009). https://doi.org/10.1016/j.jnucmat.2009.03.011
  6. J. H. Kim, J. S. Cheon, B. O. Lee, C. B. Lee, S. H. Jee, and Y. S. Yoon, Proc. of the Korean Radioactivewaste Society 2010 Spring Meeting, Yesan, Korea (2010).
  7. D. C. Crawford, D. L. Porter, and S. L. Hayes, J. Nucl. Mater. 371, 202 (2007). https://doi.org/10.1016/j.jnucmat.2007.05.010
  8. D. D. Keiser, ANL-NT-240 (2006).
  9. J. H. Kim, J. H. Baek, B. O. Lee, C. B. Lee, and Y. S. Yoon, Kor. J. Met. Mater. 48, 691 (2010).
  10. K. Nakamura, M. Kurata, T. Ogata, A. Itoh, and M. Akabori, J. Nucl. Mater. 275, 151 (1999). https://doi.org/10.1016/S0022-3115(99)00116-6
  11. A. Palenzona and S. Cirafici, J. Phase Equil. 12, 49 (1991). https://doi.org/10.1007/BF02663674
  12. J. H. Kim, H. J. Ryu, J. H. Baek, S. J. Oh, B. O. Lee, C. B. Lee, and Y. S. Yoon, J. Nucl. Mater. 394, 144 (2009). https://doi.org/10.1016/j.jnucmat.2009.08.018
  13. D. D. Keiser Jr. and M. A. Dayananda, J. Nucl. Mater. 200, 2 (1993).
  14. G. L. Hofman, et al, Material Science and Technology - A Comprehensive Treatment, 10A Part I, VCH, Germany, p. 33 (1994).
  15. T. B. Massalski, J. L. Murray, L. H. Bennet, H. Baker, and K. Kacprzak, Binary Alloy Phase Diagrams, 2nd Ed., ASM International, p. 1790 (1986).
  16. J. I. Cole and J. H. Kim, Private communication (2010).
  17. H. J. Ryu, S. W. Yang, J. H. Kim, J. S. Cheon, B. O. Lee, and C. B. Lee, Trans. Kor. Nucl. Soc. Autumn Meeting, Gyeongju, Korea (2009).