DOI QR코드

DOI QR Code

역사시대에 분화한 백두산 화산재의 화학 성분

Geochemical Composition of Volcanic Ash from Historical Eruptions of Mt. Baekdu, Korea

  • 윤성효 (부산대학교 사범대학 지구과학교육과) ;
  • 고정선 (부산대학교 사범대학 지구과학교육과) ;
  • 장철우 (부산대학교 대학원 지구과학과)
  • Yun, Sung-Hyo (Department of Earth Science Education, Pusan National University) ;
  • Koh, Jeon Seon (Department of Earth Science Education, Pusan National University) ;
  • Chang, Cheolwoo (Department of Earth Science, Pusan National University)
  • 투고 : 2018.01.29
  • 심사 : 2018.03.26
  • 발행 : 2018.03.31

초록

백두산에서 역사시대에 분화한 화산재의 시료에 대하여 다양한 방법으로 주성분과 미량성분을 분석하였다. 화산재의 주성분 원소 함량은 $SiO_2$ 58.8~71.1 wt.%, $Al_2O_3$ 9.6~16.8 wt.%, ${Fe_2O_3}^T$ 4.5~6.9 wt.%, MgO 0.1~1.7 wt.%, CaO 0.3~1.6 wt.%, $Na_2O$ 5.2~6.3 wt.%, $K_2O$ 4.3~5.9 wt.% 그리고 $TiO_2$ 1.2 wt.%이하로 분석되었다. Ba, Cu, Cr. Co, Ni, Sr, V, Zn와 Zr을 포함하는 32개 미량원소가 분석되었는데, 이들 화산재는 일부 미량원소와 경희토류 원소의 부화정도에 따라 두 그룹(그룹 A, 그룹 B)으로 구분되며, 그룹 A에는 1천년 전의 밀레니엄 분화물, 1668년과 1903년 분화물이, 그룹 B에는 1702년 분화물이 해당된다. 중금속원소인 Cu, Co, Zn, Mn 등은 소량 함유되어 나타난다. 백두산 화산재는, 섭입대 기원의 일본 사쿠라지마 화산의 화산재와 비교하여, 미량성분원소 중 Y, Nb, Pb, U, Sc, V, Ni 그리고 Cu 함량은 낮게 나타나며, Zr, Ba, Hf, Cr, Co, Zn 그리고 희토류(Eu제외) 등은 높은 함량을 나타낸다.

Volcanic ash samples of historical eruptions from Mt. Baekdu were analyzed for major oxides, trace and rare earth elements by a variety of analytical techniques. The results indicate that the ashes consist of approximately 58.8~71.1 wt.% $SiO_2$, 9.6~16.8 wt.% $Al_2O_3$, 4.5~6.9 wt.% $Fe_2O_{3t}$, 0.1~1.7 wt.% MgO, 0.3~1.6 wt.% CaO, 5.2~6.3 wt.% $Na_2O$, 4.3~5.9 wt.% $K_2O$ and less than 1.2 wt.% $TiO_2$. Thirty two trace metals including Ba, Cu, Cr. Co, Ni, Sr, V, Zn, and Zr were analyzed. The ashes can be divided two groups: group A(1 ka Millennium pumice, 1668 and $190{\underline{3}}$ pumice) and group B(1702 pumice) according to the relative enrichment of HREEs. The abundances of heavy metals such as Cu, Co, Mn, and Zn were relatively low. As compared to the Sakurajima volcanic ash, Baekdusan volcanic ash has low concentrations of Y, Nb, Pb, U, Sc, V, Ni and Cu and high concentrations of Zr, Ba, Hf, Cr, Co, Zn and rare-earth (except Eu).

키워드

참고문헌

  1. Bayhurst, G.K., Wohletz, K.H., and Mason, A.S., 1994, A method for characterizing volcanic ash from the Decemver 15, 1989, eruption of Redoubt volcano, Alaska, Volcanic Ash and Aviation Safety; Proceedings of the First International Symposium on Volcanic Ash and Aviation, U.S. Geological Survey Bulletin 2047, p.450 (Edited by Casadevall, T.J.), p.13-17.
  2. Furukawa, R., Yoshimoto, M., Yamagata, K., 1997. Did Hokkaido Komagatake Volcano Erupt in 1694? - Reappraisal of the Eruptive Ages of 17th-18th Centuries in Hokkaido, Bulletin of Volcanological Society of Japan, 42, pp. 269-279. (in Japanese with English abstract)
  3. Furuta, T., Fujioka, K., and Arai, F., 1986, Widespread submarine tephras around Japan-Petrographic and chemical properties. Marine Geology, 72, 125-142. https://doi.org/10.1016/0025-3227(86)90103-9
  4. Heiken, G., 1974, An atlas of volcanic ash, Smithonian Contributions to the Earth Sciences, 12, Smithonian Institution Press, City of Washington, 101p..
  5. JMA, 2015, 90. Sakurajima, Continuously Monitored by JMA(Japan Meteorological Administration). http://www.data.jma.go.jp/svd/vois/data/tokyo/STOCK/souran_eng/volcanoes/90
  6. Kim, N.-H., Song, Y.-S., Park, K.-H., and Lee, H-S., 2009, Shrimp U-Pb zircon ages of the granite gneisses from the Pyeonghae area of the northeastern Yeongnam Massif (Sobaeksan Massif). Journal of Petrological Society of Korea, 18, p. 31-47 (in Korean with English abstract).
  7. Kuritani, T., Kimura, J., Miyamoto, T., Wei, H., and Shimano, T., 2009, Intraplate magmatism related to deceleration of upwelling asthenospheric mantle: Implications from the Changbaishan shield basalts, northeast China. Lithos, 112, 247-258. https://doi.org/10.1016/j.lithos.2009.02.007
  8. Kuritani, T., Ohtani, E., and Kimura, J. I., 2011, Intensive hydration of the mantle transition zone beneath China caused by ancient slab stagnation, Nature geoscience, 4, 713-716. https://doi.org/10.1038/ngeo1250
  9. Le Bas, M.J., Le Maitre, R.W., Streckeisen, A., and Zanettin, B., 1986. A chemical classification of volcanic rocks based on the total alkalis-silica diagram. Journal of Petrology, 27, 745-750. https://doi.org/10.1093/petrology/27.3.745
  10. Machida, H. and Arai, F., 1983, Extensive ash falls in and around the Sea of Japan from large late Quaternary eruptions, Journal of Volcanology and Geothermal Research, 18, 151-164. https://doi.org/10.1016/0377-0273(83)90007-0
  11. Machida, H., Arai, F., and Moriwaki, H., 1981, Two Korean tephras, Holocene markers in the Sea of Japan and the Japanese Islands, Kagaku, 51, 562-569(in Japanese).
  12. Machida, H., Moriwaki, H., and Zhao, D.C., 1990, The recent major eruption of Changbai volcano and its environmental effects. Geographical Reports of Tokyo Metropolitan University, 25, 1-20.
  13. Machida, H., 1999. The stratigraphy, chronology and distribution of distal marker-tephras in and around Japan. Global and Planetary Change, 21, 71-79. https://doi.org/10.1016/S0921-8181(99)00008-9
  14. Nakagawa, M. and Ohba, T., 2002, Minerals in volcanic ash 1: Primary minerals and volcanic glass, Global Environmental Research, 64(2), 1-51.
  15. Nakagawa, M., Ishizuka, Y., Kudo, T., Yoshimoto, M., Hirose, W., Ishizaki, Y., Gouchi, N., Katsui, Y., Alexander, S., Steinberg, G.S. and Abdurakhmanov, A.I., 2002, Tyatya volcano, southwestern Kuril arc: Recent eruptive activity Inferred from widespread tephra. Island Arc, 11, 236-254. https://doi.org/10.1046/j.1440-1738.2002.00368.x
  16. Park, C.S., Shin, H.S., Oh, H., Moon, J.H., Cho, H., and Cheong, C.S. 2013, Determination of trace elements in geological reference materials G-3, GSP-2 and SGD-1a by low dilution glass bead digestion and ICP-MS, Geostandards and Geoanalytical Research, 37, 361-368. https://doi.org/10.1111/j.1751-908X.2012.00212.x
  17. Poitrasson, F. Duthou, J.L., and Pin, C. 1995. The relationship between petrology and Nd isotopes as evidence for contrasting anorogenic granite genesis: Example of the Corsican Province(SE France). Journal of Petrology, 36, 1251-1274. https://doi.org/10.1093/petrology/36.5.1251
  18. Sun, C., Liu, J., You, H., and Nemeth, K., 2017, Tephrostratigraphy of Changbaishan volcano, northeast China, since the mid-Holocene. Quaternary Science Reviews, 177, 104-119. https://doi.org/10.1016/j.quascirev.2017.10.021
  19. Sun, S.S. and McDonough, W.F., 1989, Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. in Magmatism in the ocean basins, Geological Society, Special Publication, 42, 313-345. https://doi.org/10.1144/GSL.SP.1989.042.01.19
  20. Wei, F., Xu, J., Shangguan, Z., Pan, B., Yu, H., Wei, W., Bai, X., and Chen, Z., 2016, Helium and carbon isotopes in the hot springs of Changbaishan Volcano, northeastern China: a material connection between Changbaishan Volcano and the west Pacific plate?, Journal of Volcanology and Geothermal Research, 327, 398-406. https://doi.org/10.1016/j.jvolgeores.2016.09.005
  21. Wei, H.Q., Liu, G.M., and Gill, J., 2013, Review of eruptive activity at Tianchi volcano, Changbaishan, northeast China: implications for possible future eruptions, Bulletin of Volcanology, 75, 1-14.
  22. Winchester, J.A. and Floyd, P.A., 1977, Geochemical discrimination of different magma series and their differentiation products using immobile elements, Chemical Geology, 20, 325-343. https://doi.org/10.1016/0009-2541(77)90057-2
  23. Yun, S.H., 2013, Volcanological interpretation of historical eruptions of Mt. Baekdusan volcano, Journal of Korean Earth Science Society, 34, 456-469(in Korean with English abstract). https://doi.org/10.5467/JKESS.2013.34.6.456
  24. Yun, S.H. and Lee, J.H., 2012, Analysis of unrest signs of activity at the Baekdusan volcano, Journal of Petrological Society of Korea, 21(1), 1-12(in Korean with English abstract). https://doi.org/10.7854/JPSK.2012.21.1.001
  25. Yun, S.H., Lee, J.H., and Chang, C.W., 2013, A study on the change of magma activity from 2002 to 2009 at Mt. Baekdusan using surface displacement, Journal of Korean Earth Science Society, 34, 470-487(in Korean with English abstract). https://doi.org/10.5467/JKESS.2013.34.6.470
  26. Yun, S.H., Koh, J.S., and Chang, C.W., 2015, Magma genesis of Holocene volcanism at Mt. Baekdusan, Abstract Book of 2015 Fall Joint Conference of Geological Science of Korea, 39, 517p.
  27. Zhang, M., Guo, Z., Sano, Y., Cheng, Z., and Zhang, L., 2015, Stagnant subducted Pacific slabderived $CO_2$ emissions: insights into magma degassing at Changbaishan volcano, NE China. Journal of Asian Earth Sciences, 106, 49-63. https://doi.org/10.1016/j.jseaes.2015.01.029
  28. Zhao, D., Tian, Y., Lei, J., Liu, L., and Zheng, S., 2009, Seismic image and origin of the Changbai intraplate volcano in East Asia: role of big mantle wedge above the stagnant Pacific slab. Physics of the Earth and Planetary Interiors, 173, 197-206. https://doi.org/10.1016/j.pepi.2008.11.009
  29. Zou, H., Fan, Q., and Yao, Y., 2008, U-Th systematics of dispersed young volcanoes in NE China: asthenosphere upwelling caused by piling up and upward thickening of stagnant Pacific slab. Chemical Geology, 255, 134-142. https://doi.org/10.1016/j.chemgeo.2008.06.022