• Title/Summary/Keyword: Tyrosine kinases

Search Result 116, Processing Time 0.018 seconds

Alteration of the Activated Responses in Platelet-Activating Factor-Stimulated Neutrophils by Protein Kinase Inhibitors (Protein Kinase 억제제 첨가 후 Platelet-Activating Factor에 의하여 자극된 호중구반응의 변경)

  • Lee, Kang-Kun;Ko, Ji-Young;Ham, Dong-Suk;Shin, Yong-Kyoo;Lee, Chung-Soo
    • The Korean Journal of Pharmacology
    • /
    • v.32 no.1
    • /
    • pp.103-112
    • /
    • 1996
  • Roles of protein kinase C and protein tyrosine kinase in the activation of neutrophil respiratory burst, degranulation and elevation of cytosolic $Ca^{2+}$ in platelet-activating factor (PAF)-stimulated neutrophils were investigated. Superoxide and $H_2O_2$ production and myeloperoxidase and acid phosphatase release in PAF-stimulated neutrophils were inhibited by protein kinase C inhibitors, staurosporine and H-7 and protein tyrosine kinase inhibitors, genistein and tyrphostin. The PAF-induced elevation of $[Ca^{2+}]_i$ in neutrophils was inhibited by staurosporine, genistein and methyl-2,5-dihydroxycinnamate. Staurosporine inhibited both intracellular $Ca^{2+}$ release and $Mn^{2+}$ influx in PAF-stimulated neutrophils. Genistein and methyl-2,5-dihydroxycinnamate inhibited $Mn^{2+}$ influx induced by PAF, whereas their effects on intracellular $Ca^{2+}$ release were not detected. In neutrophils preactivated by PMA, the stimulatory effect of PAF on the elevation of $[Ca^{2+}]_i$ was reduced. Protein kinase C and protein tyrosine kinase may be involved in respiratory burst, lysosomal enzyme release and $Ca^{2+}$ mobilization in PAF-stimulated neutrophils. The elevation of $[Ca^{2+}]_i$ appears to be accomplished by intracullular $Ca^{2+}$ release and $Ca^{2+}$ influx which are differently regulated by protein kinases. Preactivation of protein kinase C appears to attenuate the stimulatory action of PAF on intracellular $Ca^{2+}$ mobilization.

  • PDF

Association Analysis of TEC Polymorphisms with Aspirin-Exacerbated Respiratory Disease in a Korean Population

  • Lee, Jin Sol;Bae, Joon Seol;Park, Byung-Lae;Cheong, Hyun Sub;Kim, Jeong-Hyun;Kim, Jason Yongha;Namgoong, Suhg;Kim, Ji-On;Park, Choon-Sik;Shin, Hyoung Doo
    • Genomics & Informatics
    • /
    • v.12 no.2
    • /
    • pp.58-63
    • /
    • 2014
  • The tyrosine-protein kinase Tec (TEC) is a member of non-receptor tyrosine kinases and has critical roles in cell signaling transmission, calcium mobilization, gene expression, and transformation. TEC is also involved in various immune responses, such as mast cell activation. Therefore, we hypothesized that TEC polymorphisms might be involved in aspirin-exacerbated respiratory disease (AERD) pathogenesis. We genotyped 38 TEC single nucleotide polymorphisms in a total of 592 subjects, which comprised 163 AERD cases and 429 aspirin-tolerant asthma controls. Logistic regression analysis was performed to examine the associations between TEC polymorphisms and the risk of AERD in a Korean population. The results revealed that TEC polymorphisms and major haplotypes were not associated with the risk of AERD. In another regression analysis for the fall rate of forced expiratory volume in 1 second ($FEV_1$) by aspirin provocation, two variations (rs7664091 and rs12500534) and one haplotype (TEC_BL2_ht4) showed nominal associations with $FEV_1$ decline (p=0.03-0.04). However, the association signals were not retained after performing corrections for multiple testing. Despite TEC playing an important role in immune responses, the results from the present study suggest that TEC polymorphisms do not affect AERD susceptibility. Findings from the present study might contribute to the genetic etiology of AERD pathogenesis.

Anti-growth Effects of Imatinib and GNF5 via Regulation of Skp2 in Human Hepatocellular Carcinoma Cells

  • Kim, Sung Hyun;Kim, Myoung-Ok;Kim, Ki-Rim
    • Journal of Cancer Prevention
    • /
    • v.23 no.4
    • /
    • pp.170-175
    • /
    • 2018
  • Background: Human hepatocellular carcinoma (HCC) is a common liver tumor and the main cause of cancer-related death. Tyrosine kinase inhibitors, such as imatinib and GNF5 which were developed to treat chronic myelogenous leukemia, regulate the progression of various cancers. The aim of this study was to confirm the anti-tumor activity of tyrosine kinase inhibitors through regulation of S-phase kinase-associated protein 2 (Skp2), an important oncogenic factor in various cancer cells, in human hepatocarcinoma SK-HEP1 cells. Methods: Cell viability and colony formation assays were conducted to evaluate the effects of imatinib, GNF5 and GNF2 on the growth of SK-HEP1 cells. Using immunoblot analysis, we assessed change of the activation of caspases, PARP, Akt, mitogen-activated protein kinases, and Skp2/p27/p21 pathway by imatinib and GNF5 in SK-HEP1 cells. Using sh-Skp2 HCC cells, the role of Skp2 in the effects of imatinib and GNF5 was evaluated. Results: Imatinib and GNF5 significantly inhibited the growth of SK-HEP1 cells. Treatment of imatinib and GNF5 decreased Skp2 expression and Akt phosphorylation, and increased the expression of p27, p21, and active-caspases in SK-HEP1 cells. In sh-Skp2 HCC cells, cell growth and the expression of Skp2 were inhibited by more than in the mock group treated with imatinib and GNF5. Conclusions: These results suggest that the anti-growth activity of tyrosine kinase inhibitors may be associated with the regulation of p27/p21 and caspases through Skp2 blockage in HCC cells.

Physiological Roles of Phospholipase Cγ and Its Mutations in Human Disease (Phospholipase Cγ의 생리적 기능과 질병과 연관된 돌연변이)

  • Jang, Hyun-Jun;Choi, Jang Hyun;Chang, Jong-Soo
    • Journal of Life Science
    • /
    • v.30 no.9
    • /
    • pp.826-833
    • /
    • 2020
  • Phospholipase C gamma (PLCγ) has critical roles in receptor tyrosine kinase- and non-receptor tyrosine kinase-mediated cellular signaling relating to the hydrolysis of phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] to produce inositol 1,4,5 trisphosphate (IP3) and diacylglycerol (DAG), which promote protein kinase C (PKC) and Ca2+ signaling to their downstream cellular targets. PLCγ has two isozymes called PLCγ1 and PLCγ2, which control cell growth and differentiation. In addition to catalytically active X- and Y-domains, both isotypes contain two Src homology 2 (SH2) domains and an SH3 domain for protein-protein interaction when the cells are activated by ligand stimulation. PLCγ also contains two pleckstrin homology (PH) domains for membrane-associated phosphoinositide binding and protein-protein interactions. While PLCγ1 is widely expressed and appears to regulate intracellular signaling in many tissues, PLCγ2 expression is restricted to cells of hematopoietic systems and seems to play a role in the regulation of immune response. A distinct mechanism for PLCγ activation is linked to an increase in phosphorylation of specific tyrosine residue, Y783. Recent studies have demonstrated that PLCγ mutations are closely related to cancer, immune disease, and brain disorders. Our review focused on the physiological roles of PLCγ by means of its structure and enzyme activity and the pathological functions of PLCγ via mutational analysis obtained from various human diseases and PLCγ knockout mice.

Insulin Receptor Substrate Proteins and Diabetes

  • Lee Yong Hee;White Morris F.
    • Archives of Pharmacal Research
    • /
    • v.27 no.4
    • /
    • pp.361-370
    • /
    • 2004
  • The discovery of insulin receptor substrate (IRS) proteins and their role to link cell surface receptors to the intracellular signaling cascades is a key step to understanding insulin and insulin-like growth factor (IGF) action. Moreover, IRS-proteins coordinate signals from the insulin and IGF receptor tyrosine kinases with those generated by proinflammatory cytokines and nutrients. The IRS2-branch of the insulin/IGF signaling cascade has an important role in both peripheral insulin response and pancreatic $\beta$-cell growth and function. Dysregulation of IRS2 signaling in mice causes the failure of compensatory hyperinsulinemia during peripheral insulin resistance. IRS protein signaling is down regulated by serine phosphorylation or protea-some-mediated degradation, which might be an important mechanism of insulin resistance during acute injury and infection, or chronic stress associated with aging or obesity. Under-standing the regulation and signaling by IRS1 and IRS2 in cell growth, metabolism and survival will reveal new strategies to prevent or cure diabetes and other metabolic diseases.

Natural Compounds from Danshen Suppress the Activity of Hepatic Stellate Cells

  • Oh, Seong-Hwan;Cho, Kyung-Hwan;Yang, Beom-Seok;Roh, Yong-Kyun
    • Archives of Pharmacal Research
    • /
    • v.29 no.9
    • /
    • pp.762-767
    • /
    • 2006
  • Danshen is an herbal medication frequently used in oriental medicine to treat liver or kidney malfunction. In the course of our studies, we observed that compounds purified from Danshen exhibit an inhibitory activity against Discoidin Domain Receptor 2 (DDR2) tyrosine kinase. Through this inhibition, these compounds also inhibited the growth of HSC T6 cells and suppressed the expression of alpha-smooth muscle actin and MMP2, as well as collagen synthesis, all of which are increased in activated liver stellate cells. Given that activation of liver stellate cells is the hallmark of liver fibrosis and that DDR2 plays a critical role in this activation, these results suggest that one of the pharmacological activities of Danshen extract that protects the liver is the inhibition of key cell-signaling kinases, such as DDR2, in liver stellate cells.

Molecular Mechanisms of Neutrophil Activation in Acute Lung Injury (급성 폐손상에서 호중구 활성화의 분자학적 기전)

  • Yum, Ho-Kee
    • Tuberculosis and Respiratory Diseases
    • /
    • v.53 no.6
    • /
    • pp.595-611
    • /
    • 2002
  • Akt/PKB protein kinase B, ALI acute lung injury, ARDS acute respiratory distress syndrome, CREB C-AMP response element binding protein, ERK extracelluar signal-related kinase, fMLP fMet-Leu-Phe, G-CSF granulocyte colony-stimulating factor, IL interleukin, ILK integrin-linked kinase, JNK Jun N-terminal kinase, LPS lipopolysaccharide, MAP mitogen-activated protein, MEK MAP/ERK kinase, MIP-2 macrophage inflammatory protein-2, MMP matrix metalloproteinase, MPO myeloperoxidase, NADPH nicotinamide adenine dinucleotide phosphate, NE neutrophil elastase, NF-kB nuclear factor-kappa B, NOS nitric oxide synthase, p38 MAPK p38 mitogen activated protein kinase, PAF platelet activating factor, PAKs P21-activated kinases, PMN polymorphonuclear leukocytes, PI3-K phosphatidylinositol 3-kinase, PyK proline-rich tyrosine kinase, ROS reactive oxygen species, TNF-${\alpha}$ tumor necrosis factor-a.

Protein Tyrosine Kinases, $p56^{lck}\;and\;p59^{fyn}$, MAP Kinase JNK1 Provide an Early Signal Required for Upregulation of Fas Ligand Expression in Aburatubolactam C-Induced Apoptosis of Human Jurkat T Cells

  • BAE MYUNG AE;JUN DO YOUN;KIM KYUNG MIN;KIM SANG KOOK;CHUN JANG SOO;TAUB DENNIS;PARK WAN;MOON BYUNG-JO;KIM YOUNG HO
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.4
    • /
    • pp.756-766
    • /
    • 2005
  • The signaling mechanism underlying aburatubolactam C-induced FasL upregulation was investigated in human Jurkat T cells. After treatment with aburatubolactam C, the src-family PTKs $p56^{lck}\;and\;p59^{fyn}$, and MAP kinases ERK2 and JNK1, were activated prior to FasL upregulation; Both $p56^{lck}\;and\;p59^{fyn}$ were directly activated 2.4- and 2.2-fold, respectively, in vitro by aburatubolactam C. The aburatubolactam C-induced cellular changes, including the activation of ERK2 and INK1, and FasL upregulation, were completely prevented by the PTK inhibitor genistein. The activation of protein kinase C (PKC$\delta,\;\epsilon\;and\;\mu$ was also induced following aburatubolactam C treatment. Although the activation of $p56^{lck}$ and tyrosine phosphorylation of the cellular proteins were not blocked by the PKC inhibitor GFl09203X, the activation of ERK2 was completely abrogated, along with a detectably enhanced JNK1 activation; FasL upregulation, and apoptosis. However, the FasL upregulation and apoptosis were significantly inhibited by the PKC activator PMA, with a remarkable increase in the ERK2 activation. The cytotoxic effect of aburatubolactam C was reduced in the presence of the anti-Fas neutralizing antibody ZB-4. Although ectopic expression of Bcl-2 failed to completely block the cytotoxicity of aburatubolactam C, it was clearly suppressed. The c-Fos mRNA expression was upregulated in a biphasic manner, where the second phasic expression overlapped with the FasL upregulation. Accordingly, these results demonstrate that aburatubolactam C-induced apoptosis is exerted, at least in part, by FasL upregulation dictated by activation of the PTK ($p56^{lck}\;and\;p59^{fyn}$) /JNKI pathway, which is negatively affected by the concurrent activation of the PKC/ERK2 pathway proximal to PTK activation.

Update on Phosphorylation-Mediated Brassinosteroid Signaling Pathways (단백질 인산화에 의해 매개되는 브라시노스테로이드 신호전달 연구의 최근 상황)

  • Lee, Yew;Kim, Soo-Hwan
    • Journal of Life Science
    • /
    • v.22 no.3
    • /
    • pp.428-436
    • /
    • 2012
  • Protein phosphorylation is a universal mechanism that regulates cellular activities. The brassinosteroid (BR) signal transduction pathway is a relay of phosphorylation and dephosphorylation cascades. It starts with the BR-induced activation of the membrane receptor kinase brassinosteroid insensitive 1 (BRI1), resulting in the dephosphorylation of transcription factors such as BZR1/BES2 and BZR2/BES1 followed by BR-induced gene expression. Brassinosteroid signal transduction research has progressed rapidly by identifying the phosphorylation/dephosphorylation site(s) of the BR-regulated kinase and phosphatase substrates with a simultaneous pursuit of mutant phenotypes. Autophosphorylation, transphosphorylation, and serine/threonine and tyrosine phosphorylation of the receptor protein kinases BRI1 and BRI1-associated kinase (BAK1) have increased the understanding of the regulatory role of those kinases during physiological and developmental processes in plants. The phosphorylation event initiated by BR is also found in the regulation of receptor-mediated endocytosis and the subsequent degradation of the receptor. However, the basic molecular links of the BR signal transduction pathway are not well understood regarding this phosphorylation/dephosphorylation event. This review summarizes the current state of BR signal transduction research to uncover the phosphorylation/dephosphorylation networks and suggests directions for future research on steroid signal transduction to gain a more comprehensive understanding of the process.

Enhanced Expression of Phospholipase C-$\gamma$1 in Regenerating Murine Neuronal Cells by Pulsing Electromagnetic Field (흰쥐에서 편측 반회후두신경 재지배 후 Phopholipase C-$\gamma$1(PLC-$\gamma$1)의 발현과 후두기능회복과의 관계)

  • 정성민;신혜정;김성숙;김문정;윤선옥;박수경;신유리;김진경
    • Journal of the Korean Society of Laryngology, Phoniatrics and Logopedics
    • /
    • v.12 no.2
    • /
    • pp.126-132
    • /
    • 2001
  • Background and Objectives : Signal traduction through phospholipase C(PLC) participate in the regulation of cell growth and differentiation. Growth factors bind to their receptors and thereby induce tyrosine phophorylation of the phospholipase C-${\gamma}$1(PLC-${\gamma}$1). PLC-${\gamma}$1 is a substrate for several receptor tyrosine kinases and its catalytic activity is increased by tyrosine phosphorylation. Tyrosine kinase phosphorylation of PLC-${\gamma}$1 stimulates PLC activation and cell proliferation. However the signal transduction pathway and the significance of PLC in injured recurrent laryngeal nerve regeneration is unknown. Therefore after we obtained fuctionally recovered rats using PEMF in this study, we attempt to provide some evidence that PLC plays a role in nerve regeneration itself and regeneration related to PEMF through the analysis of the difference between fucntional recovery group and non-recovery group in the recurrent laryngeal nerve. Materials and Method : Using 32 healthy male Sprague-Dawley rats, transections and primary anastomosis were performed on their left recurrent laryngeal nerves. Rats were then randomly assigned to 2 groups. The experimental group(n=16) received PEMS by placing them in custom cages equipped with Helm-holz coils(3hr/day, 5days/wk, for 12wk). The control group(n=16) were handled the same way as the experimental group, except that they did not receive PEMS. Laryngo-videoendoscopy was performed before and after surgery and followed up weekly. Laryngeal EMG was obtained in both PCA and TA muscles. Immunohistochemisty staining and Western blotting analysis using monoclonal antibody was performed to detect PLC-${\gamma}$1 in recurrent laryngeal nerve and nodose ganglion. Results : 10 rats(71%) in experimental group and 4 rats(38%) in the control group showed recovery of vocal fold motion. Functionally-recoverd rats show PLC-${\gamma}$1 positive cells in neuron and ganglion cells after 12 weeks from nerve injury. Conclusion : This study shows that PLC1-${\gamma}$ involved in singnal trasduction pathway in functinal recovery of injured recurrent laryngeal nerve and PEMF enhance the functional recovery by effect on this molecule.

  • PDF