Browse > Article
http://dx.doi.org/10.5352/JLS.2020.30.9.826

Physiological Roles of Phospholipase Cγ and Its Mutations in Human Disease  

Jang, Hyun-Jun (School of Life Sciences, Ulsan National Institute of Science and Technology)
Choi, Jang Hyun (School of Life Sciences, Ulsan National Institute of Science and Technology)
Chang, Jong-Soo (Division of Life Science and Chemistry, College of Science and Technology)
Publication Information
Journal of Life Science / v.30, no.9, 2020 , pp. 826-833 More about this Journal
Abstract
Phospholipase C gamma (PLCγ) has critical roles in receptor tyrosine kinase- and non-receptor tyrosine kinase-mediated cellular signaling relating to the hydrolysis of phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] to produce inositol 1,4,5 trisphosphate (IP3) and diacylglycerol (DAG), which promote protein kinase C (PKC) and Ca2+ signaling to their downstream cellular targets. PLCγ has two isozymes called PLCγ1 and PLCγ2, which control cell growth and differentiation. In addition to catalytically active X- and Y-domains, both isotypes contain two Src homology 2 (SH2) domains and an SH3 domain for protein-protein interaction when the cells are activated by ligand stimulation. PLCγ also contains two pleckstrin homology (PH) domains for membrane-associated phosphoinositide binding and protein-protein interactions. While PLCγ1 is widely expressed and appears to regulate intracellular signaling in many tissues, PLCγ2 expression is restricted to cells of hematopoietic systems and seems to play a role in the regulation of immune response. A distinct mechanism for PLCγ activation is linked to an increase in phosphorylation of specific tyrosine residue, Y783. Recent studies have demonstrated that PLCγ mutations are closely related to cancer, immune disease, and brain disorders. Our review focused on the physiological roles of PLCγ by means of its structure and enzyme activity and the pathological functions of PLCγ via mutational analysis obtained from various human diseases and PLCγ knockout mice.
Keywords
Disease-associated mutation; knockout mice; Phospholipase C gamma; structure;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Ryu, S. H., Suh, P. G., Cho, K. S., Lee, K. Y. and Rhee, S. G. 1987. Bovine brain cytosol contains three immunologically distinct forms of inositolphospholipid-specific phospholipase c. Proc. Natl. Acad. Sci. USA. 84, 6649-6653.   DOI
2 Schade, A., Walliser, C., Wist, M., Haas, J., Vatter, P., Kraus, J. M., Filingeri, D., Havenith, G., Kestler, H. A. and Milner, J. D., et al. 2016. Cool-temperature-mediated activation of phospholipase c-gamma2 in the human hereditary disease plaid. Cell Signal. 28, 1237-1251.   DOI
3 Serrano, C. J., Graham, L., Debell, K., Rawat, R., Veri, M. C., Bonvini, E., Rellahan, B. L. and Reischl, I. G. 2005. A new tyrosine phosphorylation site in plc gamma 1: The role of tyrosine 775 in immune receptor signaling. J. Immunol. 174, 6233-6237.   DOI
4 Sierksma, A., Lu, A., Mancuso, R., Fattorelli, N., Thrupp, N., Salta, E., Zoco, J., Blum, D., Buee, L. and De Strooper, B., et al. 2020. Novel alzheimer risk genes determine the microglia response to amyloid-beta but not to tau pathology. EMBO Mol. Med. 12, e10606.
5 Bae, J. H., Lew, E. D., Yuzawa, S., Tome, F., Lax, I. and Schlessinger, J. 2009. The selectivity of receptor tyrosine kinase signaling is controlled by a secondary sh2 domain binding site. Cell 138, 514-524.   DOI
6 Behjati, S., Tarpey, P. S., Sheldon, H., Martincorena, I., Van Loo, P., Gundem, G., Wedge, D. C., Ramakrishna, M., Cooke, S. L. and Pillay, N., et al. 2014. Recurrent ptprb and plcg1 mutations in angiosarcoma. Nat. Genet. 46, 376-379.   DOI
7 Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N. and Bourne, P. E. 2000. The protein data bank. Nucleic Acids Res. 28, 235-242.   DOI
8 Bunney, T. D., Esposito, D., Mas-Droux, C., Lamber, E., Baxendale, R. W., Martins, M., Cole, A., Svergun, D., Driscoll, P. C. and Katan, M. 2012. Structural and functional integration of the plcgamma interaction domains critical for regulatory mechanisms and signaling deregulation. Structure 20, 2062-2075.   DOI
9 Streb, H., Irvine, R. F., Berridge, M. J. and Schulz, I. 1983. Release of ca2+ from a nonmitochondrial intracellular store in pancreatic acinar cells by inositol-1,4,5-trisphosphate. Nature 306, 67-69.   DOI
10 Sims, R., Van Der Lee, S. J., Naj, A. C., Bellenguez, C., Badarinarayan, N., Jakobsdottir, J., Kunkle, B. W., Boland, A., Raybould, R. and Bis, J. C., et al. 2017. Rare coding variants in plcg2, abi3, and trem2 implicate microglial-mediated innate immunity in alzheimer's disease. Nat. Genet. 49, 1373-1384.   DOI
11 Suh, P. G., Park, J. I., Manzoli, L., Cocco, L., Peak, J. C., Katan, M., Fukami, K., Kataoka, T., Yun, S. and Ryu, S. H. 2008. Multiple roles of phosphoinositide-specific phospholipase c isozymes. BMB Rep. 41, 415-434.   DOI
12 Suh, P. G., Ryu, S. H., Moon, K. H., Suh, H. W. and Rhee, S. G. 1988. Cloning and sequence of multiple forms of phospholipase c. Cell 54, 161-169.   DOI
13 Takai, Y., Kishimoto, A., Iwasa, Y., Kawahara, Y., Mori, T. and Nishizuka, Y. 1979. Calcium-dependent activation of a multifunctional protein kinase by membrane phospholipids. J. Biol. Chem. 254, 3692-3695.   DOI
14 Takalo, M., Wittrahm, R., Wefers, B., Parhizkar, S., Jokivarsi, K., Kuulasmaa, T., Makinen, P., Martiskainen, H., Wurst, W. and Xiang, X., et al. 2020. The alzheimer's disease-associated protective $plc{\gamma}2$-p522r variant promotes beneficial microglial functions. Mol. Neurodegener. 15, 52.   DOI
15 Takenawa, T. and Nagai, Y. 1981. Purification of phosphatidylinositol-specific phospholipase c from rat liver. J. Biol. Chem. 256, 6769-6775.   DOI
16 Ellis, M. V., James, S. R., Perisic, O., Downes, C. P., Williams, R. L. and Katan, M. 1998. Catalytic domain of phosphoinositide-specific phospholipase c (plc). Mutational analysis of residues within the active site and hydrophobic ridge of plcdelta1. J. Biol. Chem. 273, 11650-11659.   DOI
17 Cockcroft, S. and Gomperts, B. D. 1985. Role of guanine nucleotide binding protein in the activation of polyphosphoinositide phosphodiesterase. Nature 314, 534-536.   DOI
18 Dawson, R. M. 1959. Studies on the enzymic hydrolysis of monophosphoinositide by phospholipase preparations from p. Notatum and ox pancreas. Biochim. Biophys. Acta. 33, 68-77.   DOI
19 De Lange, K. M., Moutsianas, L., Lee, J. C., Lamb, C. A., Luo, Y., Kennedy, N. A., Jostins, L., Rice, D. L., Gutierrez-Achury, J. and Ji, S. G., et al. 2017. Genome-wide association study implicates immune activation of multiple integrin genes in inflammatory bowel disease. Nat. Genet. 49, 256-261.   DOI
20 Falasca, M., Logan, S. K., Lehto, V. P., Baccante, G., Lemmon, M. A. and Schlessinger, J. 1998. Activation of phospholipase c gamma by pi 3-kinase-induced ph domain-mediated membrane targeting. EMBO J. 17, 414-422.   DOI
21 Follo, M. Y., Pellagatti, A., Armstrong, R. N., Ratti, S., Mongiorgi, S., De Fanti, S., Bochicchio, M. T., Russo, D., Gobbi, M. and Miglino, M., et al. 2019. Response of high-risk mds to azacitidine and lenalidomide is impacted by baseline and acquired mutations in a cluster of three inositide-specific genes. Leukemia 33, 2276-2290.   DOI
22 Ftouhi-Paquin, N., Alda, M., Grof, P., Chretien, N., Rouleau, G. and Turecki, G. 2001. Identification of three polymorphisms in the translated region of plc-gamma1 and their investigation in lithium responsive bipolar disorder. Am. J. Med. Genet. 105, 301-305.   DOI
23 Vaque, J. P., Gomez-Lopez, G., Monsalvez, V., Varela, I., Martinez, N., Perez, C., Dominguez, O., Grana, O., Rodriguez-Peralto, J. L. and Rodriguez-Pinilla, S. M., et al. 2014. Plcg1 mutations in cutaneous t-cell lymphomas. Blood 123, 2034-2043.   DOI
24 Turecki, G., Grof, P., Cavazzoni, P., Duffy, A., Grof, E., Ahrens, B., Berghofer, A., Muller-Oerlinghausen, B., Dvorakova, M. and Libigerova, E., et al. 1998. Evidence for a role of phospholipase c-gamma1 in the pathogenesis of bipolar disorder. Mol. Psychiatry 3, 534-538.   DOI
25 Vallois, D., Dobay, M. P., Morin, R. D., Lemonnier, F., Missiaglia, E., Juilland, M., Iwaszkiewicz, J., Fataccioli, V., Bisig, B. and Roberti, A., et al. 2016. Activating mutations in genes related to tcr signaling in angioimmunoblastic and other follicular helper t-cell-derived lymphomas. Blood 128, 1490-1502.
26 Van Der Lee, S. J., Conway, O. J., Jansen, I., Carrasquillo, M. M., Kleineidam, L., Van Den Akker, E., Hernandez, I., Van Eijk, K. R., Stringa, N. and Chen, J. A., et al. 2019. A nonsynonymous mutation in plcg2 reduces the risk of alzheimer's disease, dementia with lewy bodies and frontotemporal dementia, and increases the likelihood of longevity. Acta. Neuropathol. 138, 237-250.   DOI
27 Walliser, C., Wist, M., Hermkes, E., Zhou, Y., Schade, A., Haas, J., Deinzer, J., Desire, L., Li, S. S. C. and Stilgenbauer, S., et al. 2018. Functional characterization of phospholipase c-gamma2 mutant protein causing both somatic ibrutinib resistance and a germline monogenic autoinflammatory disorder. Oncotarget 9, 34357-34378.   DOI
28 Wang, D., Feng, J., Wen, R., Marine, J. C., Sangster, M. Y., Parganas, E., Hoffmeyer, A., Jackson, C. W., Cleveland, J. L. and Murray, P. J., et al. 2000. Phospholipase cgamma2 is essential in the functions of b cell and several fc receptors. Immunity 13, 25-35.   DOI
29 Gbadegesin, R. A., Adeyemo, A., Webb, N. J., Greenbaum, L. A., Abeyagunawardena, A., Thalgahagoda, S., Kale, A., Gipson, D., Srivastava, T. and Lin, J. J., et al. 2015. Hla-dqa1 and plcg2 are candidate risk loci for childhood-onset steroid-sensitive nephrotic syndrome. J. Am. Soc. Nephrol. 26, 1701-1710.   DOI
30 Fu, G., Chen, Y., Yu, M., Podd, A., Schuman, J., He, Y., Di, L., Yassai, M., Haribhai, D. and North, P. E., et al. 2010. Phospholipase c{gamma}1 is essential for t cell development, activation, and tolerance. J. Exp. Med. 207, 309-318.   DOI
31 Gellatly, S. A., Kalujnaia, S. and Cramb, G. 2012. Cloning, tissue distribution and sub-cellular localisation of phospholipase c x-domain containing protein (plcxd) isoforms. Biochem. Biophys. Res. Commun. 424, 651-656.   DOI
32 Hajicek, N., Charpentier, T. H., Rush, J. R., Harden, T. K. and Sondek, J. 2013. Autoinhibition and phosphorylation-induced activation of phospholipase c-gamma isozymes. Biochemistry 52, 4810-4819.   DOI
33 Hajicek, N., Keith, N. C., Siraliev-Perez, E., Temple, B. R., Huang, W., Zhang, Q., Harden, T. K. and Sondek, J. 2019. Structural basis for the activation of plc-gamma isozymes by phosphorylation and cancer-associated mutations. Elife 8.
34 Harlan, J. E., Hajduk, P. J., Yoon, H. S. and Fesik, S. W. 1994. Pleckstrin homology domains bind to phosphatidylinositol-4,5-bisphosphate. Nature 371, 168-170.   DOI
35 Hokin, L. E. and Hokin, M. R. 1953. The incorporation of 32p into the nucleotides of ribonucleic acid in pigeon pancreas slices. Biochim. Biophys. Acta. 11, 591-592.   DOI
36 Ichise, H., Ichise, T. and Yoshida, N. 2016. Phospholipase cgamma2 is required for luminal expansion of the epididymal duct during postnatal development in mice. PLoS One 11, e0150521.   DOI
37 Zhou, Q., Lee, G. S., Brady, J., Datta, S., Katan, M., Sheikh, A., Martins, M. S., Bunney, T. D., Santich, B. H. and Moir, S., et al. 2012. A hypermorphic missense mutation in plcg2, encoding phospholipase cgamma2, causes a dominantly inherited autoinflammatory disease with immunodeficiency. Am. J. Hum. Genet. 91, 713-720.   DOI
38 Woyach, J. A., Furman, R. R., Liu, T. M., Ozer, H. G., Zapatka, M., Ruppert, A. S., Xue, L., Li, D. H., Steggerda, S. M. and Versele, M., et al. 2014. Resistance mechanisms for the bruton's tyrosine kinase inhibitor ibrutinib. N. Engl. J. Med. 370, 2286-2294.   DOI
39 Yang, Y. R., Follo, M. Y., Cocco, L. and Suh, P. G. 2013. The physiological roles of primary phospholipase c. Adv. Biol. Regul. 53, 232-241.   DOI
40 Yang, Y. R., Jung, J. H., Kim, S. J., Hamada, K., Suzuki, A., Kim, H. J., Lee, J. H., Kwon, O. B., Lee, Y. K. and Kim, J., et al. 2017. Forebrain-specific ablation of phospholipase cgamma1 causes manic-like behavior. Mol. Psychiatry 22, 1473-1482.   DOI
41 Kemp, P., Hubscher, G. and Hawthorne, J. N. 1961. Phosphoinositides. 3. Enzymic hydrolysis of inositol-containing phospholipids. Biochem. J. 79, 193-200.   DOI
42 Jang, H. J., Suh, P. G., Lee, Y. J., Shin, K. J., Cocco, L. and Chae, Y. C. 2018. Plcgamma1: Potential arbitrator of cancer progression. Adv. Biol. Regul. 67, 179-189.   DOI
43 Ji, Q. S., Winnier, G. E., Niswender, K. D., Horstman, D., Wisdom, R., Magnuson, M. A. and Carpenter, G. 1997. Essential role of the tyrosine kinase substrate phospholipase c-gamma1 in mammalian growth and development. Proc. Natl. Acad. Sci. USA. 94, 2999-3003.   DOI
44 Kang, D. S., Yang, Y. R., Lee, C., Park, B., Park, K. I., Seo, J. K., Seo, Y. K., Cho, H., Lucio, C. and Suh, P. G. 2018. Netrin-1/dcc-mediated plcgamma1 activation is required for axon guidance and brain structure development. EMBO Rep. 19.
45 Magno, L., Lessard, C. B., Martins, M., Lang, V., Cruz, P., Asi, Y., Katan, M., Bilsland, J., Lashley, T. and Chakrabarty, P., et al. 2019. Alzheimer's disease phospholipase c-gamma-2 (plcg2) protective variant is a functional hypermorph. Alzheimers Res. Ther. 11, 16.   DOI
46 Kertesz, Z., Gyori, D., Kormendi, S., Fekete, T., Kis-Toth, K., Jakus, Z., Schett, G., Rajnavolgyi, E., Dobo-Nagy, C. and Mocsai, A. 2012. Phospholipase cgamma2 is required for basal but not oestrogen deficiency-induced bone resorption. Eur. J. Clin. Invest. 42, 49-60.   DOI
47 Kim, H. Y., Yang, Y. R., Hwang, H., Lee, H. E., Jang, H. J., Kim, J., Yang, E., Kim, H., Rhim, H. and Suh, P. G., et al. 2019. Deletion of plcgamma1 in gabaergic neurons increases seizure susceptibility in aged mice. Sci. Rep. 9, 17761.   DOI
48 Liao, H. J., Kume, T., Mckay, C., Xu, M. J., Ihle, J. N. and Carpenter, G. 2002. Absence of erythrogenesis and vasculogenesis in plcg1-deficient mice. J. Biol. Chem. 277, 9335-9341.   DOI
49 Liu, Y., Bunney, T. D., Khosa, S., Mace, K., Beckenbauer, K., Askwith, T., Maslen, S., Stubbs, C., De Oliveira, T. M. and Sader, K., et al. 2020. Structural insights and activating mutations in diverse pathologies define mechanisms of deregulation for phospholipase c gamma enzymes. EBioMedicine 51, 102607.   DOI
50 Lovlie, R., Berle, J. O., Stordal, E. and Steen, V. M. 2001. The phospholipase c-gamma1 gene (plcg1) and lithium-responsive bipolar disorder: Re-examination of an intronic dinucleotide repeat polymorphism. Psychiatr. Genet. 11, 41-43.   DOI
51 Manso, R., Rodriguez-Pinilla, S. M., Gonzalez-Rincon, J., Gomez, S., Monsalvo, S., Llamas, P., Rojo, F., Perez-Callejo, D., Cereceda, L. and Limeres, M. A., et al. 2015. Recurrent presence of the plcg1 s345f mutation in nodal peripheral t-cell lymphomas. Haematologica 100, e25-27.   DOI
52 Ombrello, M. J., Remmers, E. F., Sun, G., Freeman, A. F., Datta, S., Torabi-Parizi, P., Subramanian, N., Bunney, T. D., Baxendale, R. W. and Martins, M. S., et al. 2012. Cold urticaria, immunodeficiency, and autoimmunity related to plcg2 deletions. N. Engl. J. Med. 366, 330-338.   DOI
53 Martin-Nalda, A., Fortuny, C., Rey, L., Bunney, T. D., Alsina, L., Esteve-Sole, A., Bull, D., Anton, M. C., Basagana, M. and Casals, F., et al. 2020. Severe autoinflammatory manifestations and antibody deficiency due to novel hypermorphic plcg2 mutations. J. Clin. Immunol. 40, 987-1000.   DOI
54 Moran-Villasenor, E., Saez-De-Ocariz, M., Torrelo, A., Arostegui, J. I., Yamazaki-Nakashimada, M. A., Alcantara-Ortigoza, M. A., Gonzalez-Del-Angel, A., Velazquez-Aragon, J. A., Lopez-Herrera, G. and Berron-Ruiz, L., et al. 2019. Expanding the clinical features of autoinflammation and phospholipase cgamma2-associated antibody deficiency and immune dysregulation by description of a novel patient. J. Eur. Acad. Dermatol. Venereol. 33, 2334-2339.   DOI
55 Neves, J. F., Doffinger, R., Barcena-Morales, G., Martins, C., Papapietro, O., Plagnol, V., Curtis, J., Martins, M., Kumararatne, D. and Cordeiro, A. I., et al. 2018. Novel plcg2 mutation in a patient with aplaid and cutis laxa. Front. Immunol. 9, 2863.   DOI
56 Parker, L., Bahat, H., Appel, M. Y., Baum, D. V., Forer, R., Pillar, N., Goldberg, M. and Goldman, M. 2019. Phospholipase c-gamma 2 activity in familial steroid-sensitive nephrotic syndrome. Pediatr. Res. 85, 719-723.   DOI
57 Paterson, H. F., Savopoulos, J. W., Perisic, O., Cheung, R., Ellis, M. V., Williams, R. L. and Katan, M. 1995. Phospholipase c delta 1 requires a pleckstrin homology domain for interaction with the plasma membrane. Biochem. J. 312(Pt 3), 661-666.   DOI
58 Piechulek, T., Rehlen, T., Walliser, C., Vatter, P., Moepps, B. and Gierschik, P. 2005. Isozyme-specific stimulation of phospholipase c-gamma2 by rac gtpases. J. Biol. Chem. 280, 38923-38931.   DOI