• 제목/요약/키워드: Typical Solar Radiation Data

검색결과 30건 처리시간 0.306초

Evaluation of Typical Solar Radiation Data by the TRY Methodology (TRY 방법론에 의한 표준일사량데이터 평가)

  • Yoo, Ho-Chun;Lee, Gwan-Ho;Kim, Kyoung-Ryul;Park, So-Hee
    • KIEAE Journal
    • /
    • 제7권6호
    • /
    • pp.23-28
    • /
    • 2007
  • Limited fossil fuels and unstable energy supply are considered as one of the critical problems in architecture requiring large amounts of energy. In order to this challenge, environment-friendly architecture design is required. Clear data should be prepared to apply solar energy to architecture aggressively and properly. This study used FS statistical analysis data regarding average daily solar radiation of Seoul observed over 20 years to find out standard year and standard daily solar radiation. This study also aims to compare and evaluate an appropriate method of selecting a standard year which is too close to measurement value through comparison and analysis with daily solar radiation acquired by applying overseas researchers' suggesting weight factor. As a result, the data nearest to measurement value of daily solar radiation was UK CIBSE TRY(TYPE 2) displaying 0.100in t-statistic index. For UK CIBSE TRY(TYPE 2), weight factor was applied to three climatic elements except relative humidity. TYPE 1 and TYPE 3 recorded 0.343 and 0.367, respectively, showing higher record of t-statistic than TYPE 2. TYPE 1 was calculated through FS statistical value of single data about daily solar radiation with other climatic elements excluded. For TYPE 3, relative humidity was added to TYPE 2. In particular, since TYPE 2 was closer to the measurement value compared to the others, it is necessary to consider relationship with other climate elements if other climate elements are added.

The Generation of Typical Meteorological Year for Research of the Solar Energy on the Korean Peninsula (한반도 태양에너지 연구를 위한 일사량 자료의 TMY 구축)

  • Jee, Joon-Bum;Lee, Seung-Woo;Choi, Young-Jean;Lee, Kyu-Tae
    • New & Renewable Energy
    • /
    • 제8권2호
    • /
    • pp.14-23
    • /
    • 2012
  • The TMY (Typical Meteorological Year) for the solar energy study is generated using observation data with 22 solar sites from KMA (Korea Meteorological Administration) during 11 years (2000-2010). The meteorological data for calculation the TMY are used solar radiation, temperature, dew point temperature, wind speed and humidity data. And the TMY is calculated to apply the FS (Finkelstein and Schafer) statistics and RMSE (Root Mean Squared Error) methods. FS statistics performed with each point and each variable and then selected top five candidate TMM months with statistical analysis and normalization. Finally TMY is generated to select the highest TMM score with evaluation the average errors for the 22 whole points. The TMY data is represented average state and long time variations with 22 sites and meteorological data. When TMY validated with the 11-year daily solar radiation data, the correlation coefficient was about 0.40 and the highest value is 0.57 in April and the lowest value is 0.23 in May. Mean monthly solar radiation of TMY is 411.72 MJ which is 4 MJ higher than original data. Average correlation coefficient is 0.71, the lowest correlation is 0.43 in May and the highest correlation is 0.90 in January. Accumulated annual solar radiation by TMY have higher value in south coast and southwestern region and have relatively low in middle regions. And also, differences between TMY and 11-year mean of is distributed lower 100 MJ in Kyeongbuk, higher 200 MJ in Jeju and higher 125 MJ in Jeonbuk and Jeonnam, respectively.

Applicability of the Solar Irradiation Model in Preparation of Typical Weather Data Considering Domestic Climate Conditions (표준기상데이터 작성을 위한 국내 기후특성을 고려한 일사량 예측 모델 적합성 평가)

  • Shim, Ji-Soo;Song, Doo-Sam
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • 제28권12호
    • /
    • pp.467-476
    • /
    • 2016
  • As the energy saving issues become one of the important global agenda, the building simulation method is generally used to predict the inside energy usage to establish the power-saving strategies. To foretell an accurate energy usage of a building, proper and typical weather data are needed. For this reason, typical weather data are fundamental in building energy simulations and among the meteorological factors, the solar irradiation is the most important element. Therefore, preparing solar irradiation is a basic factor. However, there are few places where the horizontal solar radiation in domestic weather stations can be measured, so the prediction of the solar radiation is needed to arrive at typical weather data. In this paper, four solar radiation prediction models were analyzed in terms of their applicability for domestic weather conditions. A total of 12 regions were analyzed to compare the differences of solar irradiation between measurements and the prediction results. The applicability of the solar irradiation prediction model for a certain region was determined by the comparisons. The results were that the Zhang and Huang model showed the highest accuracy (Rad 0.87~0.80) in most of the analyzed regions. The Kasten model which utilizes a simple regression equation exhibited the second-highest accuracy. The Angstrom-Prescott model is easily used, also by employing a plain regression equation Lastly, the Winslow model which is known for predicting global horizontal solar irradiation at any climate regions uses a daily integration equation and showed a low accuracy regarding the domestic climate conditions in Korea.

The Study on the Optimal Angle of the Solar Panel using by Solar Radiation Model (태양복사모델을 이용한 태양전지판의 최적 경사각에 대한 연구)

  • Jee, Joon-Bum;Choi, Young-Jean;Lee, Kyu-Tae
    • Journal of the Korean Solar Energy Society
    • /
    • 제32권2호
    • /
    • pp.64-73
    • /
    • 2012
  • The angle of solar panels is calculated using solar radiation model for the efficient solar power generation. In ideal state, the time of maximum solar radiation is represented from 12:08 to 12:40 during a year at Gangneung and it save rage time is12:23. The maximum solar radiation is 1012$W/m^2$ and 708$W/m^2$ inc lear sky and cloudy sky, respectively. Solar radiation is more sensitive to North-South (N-S) slope angle than East-West (E-W) azimuth angle. Daily solar radiation on optimum angle of solar panel is higher than that on horizontal surface except for 90 days during summer. In order to apply to the real atmosphere, the TMY (typical meteorological Year) data which obtained from the 22 solar sites operated by KMA(Korea Meteorological Administration) during 11 years(2000 to 2010) is used as the input data of solar radiation model. The distribution of calculated solar radiation is similar to the observation, except in Andong, where it is overestimated, and in Mokpo and Heuksando, where it is underestimated. Statistical analysis is performed on calculated and observed monthly solar radiation on horizontal surface, and the calculation is overestimated from the observation. Correlationis 0.95 and RMSE (Root Mean Square Error) is10.81 MJ. The result shows that optimum N-S slope angles of solar panel are about $2^{\circ}$ lower than station latitude, but E-W slope angles are lower than ${\pm}1^{\circ}$. There are three types of solar panels: horizontal, fixed with optimum slope angle, and panels with tracker system. The energy efficiencies are on average 20% higher on fixed solar panel and 60% higher on tracker solar panel than compared to the horizontal solar panel, respectively.

Distribution and Variation Characteristic of Solar Radiation Resources in Korea (국내 태양복사 분포 및 변화특성)

  • Jo, Dok-Ki;Yun, Chang-Yeol;Kim, Kwang-Deuk;Kang, Young-Heak
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 춘계학술대회 초록집
    • /
    • pp.200.1-200.1
    • /
    • 2010
  • Solar energy is one of the most promising energy resources in the future. For the application and dissemination of solar energy technologies in various fields, reliable data sets of solar irradiation are needed for engineers, researchers, businessmen, and policy makers. Global horizontal solar radiation is needed for the use of flat plate collector, solar domestic hot water system, photovoltaic devices and passive systems like green house. In many countries, solar radiation data accumulated for more then 40 or 50 years and typical weather data are published with average of more then 30 years. In Korea, those global total radiations are measured for about 30 years. With the connections of computer network, measured data could be transmitted to the central control system at key station through Ethernet lines. The data acquisition systems are connected to be automatically controlled by the monitoring network. Global horizontal solar radiation data 16 locations were measured and averaged from 1982 to 2008.

  • PDF

Analysis and Calculation of Global Hourly Solar Irradiation Based on Sunshine Duration for Major Cities in Korea (국내 주요도시의 일조시간데이터를 이용한 시간당전일사량 산출 및 분석)

  • Lee, Kwan-Ho;Sim, Kwang-Yeal
    • Journal of the Korean Solar Energy Society
    • /
    • 제30권2호
    • /
    • pp.16-21
    • /
    • 2010
  • Computer simulation of buildings and solar energy systems are being used increasingly in energy assessments and design. This paper discusses the possibility of using sunshine duration data instead of global hourly solar irradiation (GHSI) data for localities with abundant data on sunshine duration. For six locations in South Korea where global radiation is currently measured, the global radiation was calculated using Sunshine Duration Radiation Model (SDRM), compared and analyzed. Results of SDRM has been compared with the measured data on the coefficients of determination (R2), root-mean-square error (RMSE) and mean bias error (MBE). This study recommends the use of sunshine duration based irradiation models if measured solar radiation data is not available.

Analysis and Calculation of Hourly Surface Temperature Based on Typical Meterorological Data for Major Cities in Korea (국내 주요도시의 표준기상자료를 이용한 시간당 표면온도 산출 및 분석)

  • Lee, Kwan-Ho;Cho, Hyun-Cheol
    • Journal of the Korean Solar Energy Society
    • /
    • 제32권3호
    • /
    • pp.123-128
    • /
    • 2012
  • Computer simulation of buildings and solar energy systems is being used increasingly in energy assessments and design. The purpose of our work is to predict the surface temperature on inclined surfaces based on ISO-TRY typical weather data. To reach this goal, three studies were performed. They consisted of quantifying the accuracy of various well-known three models. The first type of models calculated diffuse horizontal irradiations from global ones and the second type models computed global irradiations on inclined planes from diffuse and global components on a horizontal surface. The third type of model calculated long-wave radiation and surface temperature from ISO-TRY typical weather data. The proposed model can provide an alternative to building designers in estimating the surface temperature and solar irradiation on inclined surfaces where only the typical meteorological data are available.

Analysis of Data and Calculation of Global Solar Radiation based on Cloud Data for Major Cities in Korea (국내 주요도시의 운량데이터를 이용한 전일사 산출 및 비교)

  • Yoo, Ho-Chun;Lee, Kwan-Ho;Park, So-Hee
    • Journal of the Korean Solar Energy Society
    • /
    • 제28권4호
    • /
    • pp.17-24
    • /
    • 2008
  • Estimation of typical solar radiation is very important for the calculations concerning many solar applications. But solar radiation measurements are not easily available because of the expensive measuring equipment and techniques required. Accordingly, for regions where no solar radiation is measured, solar radiation need to be estimated using other meteorological data. However, currently in Korea, there is no study on how to do this. In this paper, the global radiation of the six major cities in South Korea where the global radiation is measured using comparatively simple CRM model was calculated compared and analyzed. The comparison between the original coefficient and the site-fitted coefficient for these cities are as follows. Differences between the site-fitted coefficient and the original coefficient for six cities are small. Except for Gwangju, both calculations show strong correlation. In case of Seoul, the $R^2$(coefficient of determination) were 0.747 and 0.749. In case of Busan and Daegu the figures were 0.817, 0.819 and 0.820, 0.821 respectively. For Gwangju, these were 0.618 and 0.622, Thus, the site-fitted coefficients were slightly higher for these four cities. On the other hand, Daejeon and Incheon was reported 0.773, 0.772 and 0.785, 0.783, respectively.

Temperature analysis of a long-span suspension bridge based on a time-varying solar radiation model

  • Xia, Qi;Liu, Senlin;Zhang, Jian
    • Smart Structures and Systems
    • /
    • 제25권1호
    • /
    • pp.23-35
    • /
    • 2020
  • It is important to take into account the thermal behavior in assessing the structural condition of bridges. An effective method of studying the temperature effect of long-span bridges is numerical simulation based on the solar radiation models. This study aims to develop a time-varying solar radiation model which can consider the real-time weather changes, such as a cloud cover. A statistical analysis of the long-term monitoring data is first performed, especially on the temperature data between the south and north anchors of the bridge, to confirm that temperature difference can be used to describe real-time weather changes. Second, a defect in the traditional solar radiation model is detected in the temperature field simulation, whereby the value of the turbidity coefficient tu is subjective and cannot be used to describe the weather changes in real-time. Therefore, a new solar radiation model with modified turbidity coefficient γ is first established on the temperature difference between the south and north anchors. Third, the temperature data of several days are selected for model validation, with the results showing that the simulated temperature distribution is in good agreement with the measured temperature, while the calculated results by the traditional model had minor errors because the turbidity coefficient tu is uncertainty. In addition, the vertical and transverse temperature gradient of a typical cross-section and the temperature distribution of the tower are also studied.

Comparative analysis of the global solar horizontal irradiation in typical meteorological data (표준기상데이터의 일사량 데이터 비교 분석)

  • Yoo, Ho-Chun;Lee, Kwan-Ho;Kang, Hyun-Gu
    • Journal of the Korean Solar Energy Society
    • /
    • 제29권6호
    • /
    • pp.102-109
    • /
    • 2009
  • The research on meteorological data in Korea has been carried out but without much consistency and has been limited to some areas only. Of relatively more importance has been the area in the utilization of the solar energy, however, the measurement of the global solar horizontal irradiation has been quite limited. In the current study, the actually measured value of the global solar horizontal irradiation from the meteorological data and the theoretically calculated value of the global solar horizontal irradiation from the cloud amount will be analyzed comparatively. The method of analysis will employ the standard meteorological data drafted by the Korean Solar Energy Society, the standard meteorological data from the presently used simulation program and the corresponding results have been compared with the calculated value of the global solar horizontal irradiation from the cloud amount. The results of comparing the values obtained from MBE(Mean Bias Error), RMSE(Root Mean Squares for Error), t-Statistic methods and those from each of the standard meteorological data show that the actually measured value of the meteorological data which have been converted into standard meteorological data with the help of the ISO TRY method give the monthly average value of the global solar horizontal irradiation. These values compared with the monthly average value from the IWEC from the Department of Energy of the USA show that the value of the global solar horizontal irradiation in the USA is quite similar. In the case of the values obtained from calculation from the cloud amount, the weather data provided by TRNSYS, except only slight difference, which means that the actually measured values of the global solar horizontal irradiation are significant. This goes to show that in the case of Korea, the value of the global solar horizontal irradiation provided by the Korea Meteorological Administration is will be deemed correct.