• Title/Summary/Keyword: Type I interferon

Search Result 77, Processing Time 0.022 seconds

Human Cytomegalovirus Inhibition of Interferon Signal Transduction

  • Daniel M. Miller
    • Korean Journal of Microbiology
    • /
    • v.38 no.4
    • /
    • pp.203-203
    • /
    • 2002
  • Cytomegalovirus (CMV), a beta-herpesvirus with worldwide distribution, exhibits host persistence, a distinguishing characteristic of all herpesviruses. This persistence is dependent upon restricted gene expression in infected cells as well as the ability of productively infected cells to escape from normal cell-mediated anti-viral immunosurveillance. Type I (IFN-α/β) and type II (IFN-γ) interferons are major components of the innate defense system against viral infection. They are potent inducers of MHC class I and II antigens and of antigen processing proteins. Additionally, IFNS mediate direct antiviral effects through induction effector molecules that block viral infection and replications such as 2′, 5-oligoadenylate synthetase (2, 5-OAS). IFNS function through activation of well-defined signal transduction pathways that involve phosphorylation of constituent proteins and ultimate formation of active transcription factors. Recent studies have shown that a number of diverse viruses, including CMV, EBV, HPV mumps and Ebola, are capable of inhibiting IFN-mediated signal transduction through a variety of mechanisms. As an example, CMV infection inhibits the ability of infected cells Is transcribe HLA class I and II antigens as well as the antiviral effector molecules 2, 5-OAS and MxA I. EMSA studies have shown that IFN-α and IFN-γ are unable to induce complete signal transduction in the presence of CMV infection, phenomena that are associated with specific decreases in JAKl and p48. Viral inhibition of IFN signal transduction represents a new mechanistic paradigm for increased viral survival, a paradigm predicting widespread consequences in the case of signal transduction factors common to multiple cytokine pathways.

Human Cytomegalovirus Inhibition of Interferon Signal Transduction

  • Miller, Daniel M.;Cebulla, Colleen M.;Sedmak, Daniel D.
    • Journal of Microbiology
    • /
    • v.38 no.4
    • /
    • pp.203-208
    • /
    • 2000
  • Cytomegalovirus (CMV), a beta-herpesvirus with worldwide distribution, exhibits host persistence, a distinguishing characteristic of all herpesviruses. This persistence is dependent upon restricted gene expression in infected cells as well as the ability of productively infected cells to escape from normal cell-mediated anti-viral immunosurveillance. Type I (IFN-$\alpha$/$\beta$) and type II (IFN-γ) interferons are major components of the innate defense system against viral infection. They are potent inducers of MHC class I and II antigens and of antigen processing proteins. Additionally, IFNS mediate direct antiviral effects through induction effector molecules that block viral infection and replications such as 2', 5-oligoadenylate synthetase (2, 5-OAS). IFNS function through activation of well-defined signal transduction pathways that involve phosphorylation of constituent proteins and ultimate formation of active transcription factors. Recent studies have shown that a number of diverse viruses, including CMV, EBV, HPV mumps and Ebola, are capable of inhibiting IFN-mediated signal transduction through a variety of mechanisms. As an example, CMV infection inhibits the ability of infected cells Is transcribe HLA class I and II antigens as well as the antiviral effector molecules 2, 5-OAS and MxA I. EMSA studies have shown that IFN-$\alpha$ and IFN-γ are unable to induce complete signal transduction in the presence of CMV infection, phenomena that are associated with specific decreases in JAKl and p48. Viral inhibition of IFN signal transduction represents a new mechanistic paradigm for increased viral survival, a paradigm predicting widespread consequences in the case of signal transduction factors common to multiple cytokine pathways.

  • PDF

Chikungunya Virus nsP2 Impairs MDA5/RIG-I-Mediated Induction of NF-κB Promoter Activation: A Potential Target for Virus-Specific Therapeutics

  • Bae, Sojung;Lee, Jeong Yoon;Myoung, Jinjong
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.12
    • /
    • pp.1801-1809
    • /
    • 2020
  • Chikungunya virus (CHIKV) was first identified in 1952 as a causative agent of outbreaks. CHIKV is transmitted by two mosquito species, Aedes aegypti and A. albopictus. Symptoms after CHIKV infection in human are typically fever and joint pain, but can also include headache, muscle pain, joint swelling, polyarthralgia, and rash. CHIKV is an enveloped single-stranded, positive-sense RNA virus with a diameter of approximately 70 nm. The pathogenesis of CHIKV infection and the mechanism by which the virus evades the innate immune system remain poorly understood. Moreover, little is known about the roles of CHIKV-encoded genes in the viral evasion of host immune responses, especially type I interferon (IFN) responses. Therefore, in the present study, we screened CHIKV-encoded genes for their regulatory effect on the activation of nuclear factor kappa B (NF-κB), a critical transcription factor for the optimal activation of IFN-β. Among others, non-structural protein 2 (nsP2) strongly inhibited melanoma differentiation-associated protein 5 (MDA5)-mediated induction of the NF-κB pathway in a dose-dependent manner. Elucidation of the detailed mechanisms of nsP2-mediated inhibition of the MDA5/RIG-I signaling pathway is anticipated to contribute to the development of virus-specific therapeutics against CHIKV infection.

Effects of long double-stranded RNAs on the resistance of rock bream Oplegnathus fasciatus fingerling against rock bream iridovirus (RBIV) challenge

  • Kosuke, Zenke;Kim, Ki-Hong
    • Journal of fish pathology
    • /
    • v.23 no.3
    • /
    • pp.273-280
    • /
    • 2010
  • To determine whether rock bream Oplegnathus fasciatus can be protected from rock bream iridovirus (RBIV) infection by intramuscular injection of long double-stranded RNAs (dsRNAs), we compared protective effect of virus-specific dsRNAs corresponding to major capsid protein (MCP), ORF 084, ORF 086 genes, and virus non-specific green fluorescent protein (GFP) gene. Furthermore, to determine whether the non-specific type I interferon (IFN) response was associated with protective effect, we estimated the activation of type I IFN response in fish using expression level of IFN inducible Mx gene as a marker. As a result, mortality of fish injected with dsRNAs and challenged with RBIV was delayed for a few days when comparing with PBS injected control group. However, virus-specific dsRNA injected groups exhibited no significant differences in survival period when compared to the GFP dsRNA injected group. Semi-quantitative analysis indicated that the degree of antiviral response via type I IFN response is supposedly equal among dsRNA injected fish. These results suggest that type I IFN response rather than sequence-specific RNA interference might involve in the lengthened survival period of fish injected with virus-specific dsRNAs.

Serotyping in Patients with Chronic Hepatitis C

  • Soon-Mo Chang
    • Biomedical Science Letters
    • /
    • v.9 no.4
    • /
    • pp.209-214
    • /
    • 2003
  • To determine the clinical usefulness of Immuno Blot test, 160 samples from the patients with chronic HCV infection were analyzed. And serotyping and line probe assay were performed to evaluate the distribution of hepatitis C virus genotypes in Korean isolates. In this group, as a result of genotyping type 1 band 2a, the serotype I and II were the most common source of HCV infection. There were no significant difference in response to the alpha-interferon HCV infection treatment with the subtype 1 b or 2a. And the serotypes of NS4 peptides were compared with the genotypes to evaluate their clinical usefulness. Among 49 cases studied for genotypes and serotype, genotype 1 b, 1 b/2b, 2a, 2a/2c and 2b were 51.0%, 2.0%, 34.6%, 8.1% and 4.0%, respectively. The serotypes I and II were 57.1% and 42.8%, respectively; they were matched with genotypes in 85.7% and seemed to be easy to perform. To monitor their performing progress or treatment response, serotype test was made before the genotype test. The Result showed that there was no significant difference in response to the alpha-interferon HCV infection treatment with the subtype 1 b or 2a in Korea.

  • PDF

Characterizations of the bovine subtype Interferon-tau Genes : Sequences of Genes and Biological Activity of Transcription Factors in JEG3 Cell

  • Kim, Min-Su;Min, Kwan-Sik;Seong, Hwan-Hoo;Kim, Chan-Lan;Kim, Dongkyo;Imakawa, Kazuhiko;Kim, Sung Woo
    • Journal of Embryo Transfer
    • /
    • v.31 no.4
    • /
    • pp.335-347
    • /
    • 2016
  • Multiple interferon tau (IFNT) genes exist in bovine. An antiluteolytic substance secreted by the bovine conceptus and primarily responsible for maternal recognition of pregnancy is bovine trophoblast protein 1 (bIFNT1), a new type I interferon tau (IFNT) genes. The objectives of this research were to investigate whether multiple, distinct gene encode bIFNT1 and other type I bIFNT gene in the bovine genome and to examine expression of bIFNT1 and other bIFNTc1 mRNAs during conceptus development. These transcrips could be regulated through caudal-related homeobox-2 (CDX2) and ETS2 and/or AP1 (JUN) expression, a transcription factor implicated in the control of cell differentiation in the trophectoderm. The presence of mRNAs encoded by bIFNT1 and type I bIFNTc1 genes were examined quantitatively via reverse transcription-polymerase chain reaction (RT-PCR) analysis of total cellular RNA (tcRNA) extracted from on day 17, 20 and 22 bovine conceptuses. The expression level of bIFNT1 was higher on day 17 transcripts were gradually weakly detectable on day 20 and 22. However, the other bIFNTc1 gene examined transcripts was highly expressed on day 20 and transcripts were weakly detectable on day 17 and 22 bovine conceptuses. Furthermore, human choriocarcinoma JEG3 was co-transfected with an -1kb-bIFNT1/c1-Luc constructs and several transcription factor expression plasmids. Compared to each -1kb-bIFNT1/c1-Luc increased when this constructs were co-transfected with, ETS2, AP1(JUN), CREBBP and/or CDX2. Also, bIFNTc1 gene was had very effect on activity by alone ETS2, and AP1 (JUN) expression factors in choriocarcinoma JEG3 cell. However, bIFNT1 gene expression of the upstream region was not identified. We demonstrated that the activities of bIFN genes are regulated by differential, tissue-specific and developmental competence during pregnancy.

STING Negatively Regulates Double-Stranded DNA-Activated JAK1-STAT1 Signaling via SHP-1/2 in B Cells

  • Dong, Guanjun;You, Ming;Ding, Liang;Fan, Hongye;Liu, Fei;Ren, Deshan;Hou, Yayi
    • Molecules and Cells
    • /
    • v.38 no.5
    • /
    • pp.441-451
    • /
    • 2015
  • Recognition of cytosolic DNA initiates a series of innate immune responses by inducing IFN-I production and subsequent triggering JAK1-STAT1 signaling which plays critical roles in the pathogenesis of infection, inflammation and autoimmune diseases through promoting B cell activation and antibody responses. The stimulator of interferon genes protein (STING) has been demonstrated to be a critical hub of type I IFN induction in cytosolic DNA-sensing pathways. However, it still remains unknown whether cytosolic DNA can directly activate the JAK1-STAT1 signaling or not. And the role of STING is also unclear in this response. In the present study, we found that dsDNA directly triggered the JAK1-STAT1 signaling by inducing phosphorylation of the Lyn kinase. Moreover, this response is not dependent on type I IFN receptors. Interestingly, STING could inhibit dsDNA-triggered activation of JAK1-STAT1 signaling by inducing SHP-1 and SHP-2 phosphorylation. In addition, compared with normal B cells, the expression of STING was significantly lower and the phosphorylation level of JAK1 was significantly higher in B cells from MRL/lpr lupus-prone mice, highlighting the close association between STING low-expression and JAK1-STAT1 signaling activation in B cells in autoimmune diseases. Our data provide a molecular insight into the novel role of STING in dsDNA-mediated inflammatory disorders.

Induction of pro-inflammatory cytokines by 29-kDa FN-f via cGAS/STING pathway

  • Hwang, Hyun Sook;Lee, Mi Hyun;Choi, Min Ha;Kim, Hyun Ah
    • BMB Reports
    • /
    • v.52 no.5
    • /
    • pp.336-341
    • /
    • 2019
  • The cGAS-STING pathway plays an important role in pathogen-induced activation of the innate immune response. The 29-kDa amino-terminal fibronectin fragment (29-kDa FN-f) found predominantly in the synovial fluid of osteoarthritis (OA) patients increases the expression of catabolic factors via the toll-like receptor-2 (TLR-2) signaling pathway. In this study, we investigated whether 29-kDa FN-f induces inflammatory responses via the cyclic GMP-AMP synthase (cGAS)/stimulator of interferon gene (STING) pathway in human primary chondrocytes. The levels of cGAS and STING were elevated in OA cartilage compared with normal cartilage. Long-term treatment of chondrocytes with 29-kDa FN-f activated the cGAS/STING pathway together with the increased level of gamma-H2AX, a marker of DNA breaks. In addition, the expression of pro-inflammatory cytokines, including granulocyte-macrophage colony-stimulating factor (GM-CSF/CSF-2), granulocyte colony-stimulating factor (G-CSF/CSF-3), and type I interferon ($IFN-{\alpha}$), was increased more than 100-fold in 29-kDa FN-f-treated chondrocytes. However, knockdown of cGAS and STING suppressed 29-kDa FN-f-induced expression of GM-CSF, G-CSF, and $IFN-{\alpha}$ together with the decreased activation of TANK-binding kinase 1 (TBK1), interferon regulatory factor 3 (IRF3), and inhibitor protein ${\kappa}B{\alpha}$ ($I{\kappa}B{\alpha}$). Furthermore, NOD2 or TLR-2 knockdown suppressed the expression of GM-CSF, G-CSF, and $IFN-{\alpha}$ as well as decreased the activation of the cGAS/STING pathway in 29-kDa FN-f-treated chondrocytes. These data demonstrate that the cGAS/STING/TBK1/IRF3 pathway plays a critical role in 29-kDa FN-f-induced expression of pro-inflammatory cytokines.

Analysis of Bovine Interferon-tau Gene subtypes Expression in the Trophoblast and Non-trophoblast cells

  • Kim, Min-Su;Lim, Hyun-Joo;Lee, Ji Hwan;Park, Soo Bong;Won, Jeong-Il;Kim, Hyun Jong
    • Journal of Embryo Transfer
    • /
    • v.33 no.4
    • /
    • pp.195-203
    • /
    • 2018
  • Interferon-tau (IFNT) is known as a major conceptus protein that signals the process of maternal recognition of pregnancy in ruminants. Also, multiple interferon genes exist in cattle, However, molecular mechanisms of these bovine IFNT (bIFNT) genes whose expressions are limited have not been characterized. We and others have observed that expression levels of bovine subtype IFNT genes in the tissues of ruminants; thus, bIFNT1 and other new type I (bIFNTc1/c2/c3) gene co-exist during the early stages of conceptus development and non-trophoblast cells. Its genes transcription could be regulated through CDX2 and ETS2 and JUN and/or cAMP-response element binding protein (CREB)-binding protein (CREBBP) expression, a transcription factor implicated in the control of cell differentiation in the trophectoderm. Bovine ear-derived fibroblast cells, were co-transfected with luciferase reporter constructs carrying upstream (positions -1000 to +51) regions of bIFNT1 and other new type I gene and various transcription factor expression plasmids. Compared to each - 1kb-bIFNT1/c1/c2/c3-Luc increased when this constructs were co-transfected with CDX2, ETS2, JUN and/or CREBBP. Also, Its genes was had very effect on activity by CDX2, either alone or with the other transcription factors, markedly increased luciferase activity. However, the degree of transcriptional activation of the bIFNTc1 gene was not similar to that bIFNT1/c2/c3 gene by expression plasmid. Furthermore, Sequence analyses also revealed that the expression levels of bIFNT1/c2/c3 gene mRNAs expression were highest on day 17, 20 and 22 trophoblast and, Madin-Darby bovine kidney (MDBK), Bovine ear-derived fibroblast (EF), and endometrium (Endo) non-trophoblast cells. But, bIFNTc1 mRNA had not same expression level, bIFNTc1 lowest levels than those of IFNT1/c2/c3 gene in both trophoblast and non-trophoblast cells. These results demonstrate that bovine subtype bIFNT genes display differential, in the trophoblast and non-trophoblast cells.

Hydroquinone suppresses IFN-β expression by targeting AKT/IRF3 pathway

  • Kim, Yong;Kim, Han Gyung;Han, Sang Yun;Jeong, Deok;Yang, Woo Seok;Kim, Jung-Il;Kim, Ji Hye;Yi, Young-Su;Cho, Jae Youl
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.21 no.5
    • /
    • pp.547-554
    • /
    • 2017
  • Previous studies have demonstrated the role of hydroquinone (HQ), a hydroxylated benzene metabolite, in modulating various immune responses; however, its role in macrophage-mediated inflammatory responses is not fully understood. In this study, the role of HQ in inflammatory responses and the underlying molecular mechanism were explored in macrophages. HQ down-regulated the expression of interferon $(IFN)-{\beta}$ mRNA in LPS-stimulated RAW264.7 cells without any cytotoxicity and suppressed interferon regulatory factor (IRF)-3-mediated luciferase activity induced by TIR-domain-containing adapter-inducing interferon-${\beta}$ (TRIF) and TANK-binding kinase 1 (TBK1). A mechanism study revealed that HQ inhibited IRF-3 phosphorylation induced by lipopolysaccharide (LPS), TRIF, and AKT by suppressing phosphorylation of AKT, an upstream kinase of the IRF-3 signaling pathway. IRF-3 phosphorylation is highly induced by wild-type AKT and poorly induced by an AKT mutant, AKT C310A, which is mutated at an inhibitory target site of HQ. We also showed that HQ inhibited IRF-3 phosphorylation by targeting all three AKT isoforms (AKT1, AKT2, and AKT3) in RAW264.7 cells and suppressed IRF-3-mediated luciferase activities induced by AKT in HEK293 cells. Taken together, these results strongly suggest that HQ inhibits the production of a type I IFN, $IFN-{\beta}$, by targeting AKTs in the IRF-3 signaling pathway during macrophage-mediated inflammation.