• 제목/요약/키워드: Two-wheeled Mobile Robot

검색결과 87건 처리시간 0.036초

두바퀴 구동형 이동로봇의 강인 자세 안정화 (Robust posture stabilization of two-wheeled mobile robots)

  • 좌동경
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2006년도 하계종합학술대회
    • /
    • pp.947-948
    • /
    • 2006
  • This paper proposes a robust posture stabilization control method for wheeled mobile robots. To solve the robust posture stabilization, we introduce reference generation mode, reference tracking mode, and reference regulation mode. In reference generation mode, a kinematic time-invariant controller is used to generate the reference trajectory which starts from the initial posture of the actual robot to the desired posture. In reference tracking mode, a sliding mode position controller is employed in such a way that the actual robot can follow the reference trajectory in the desired forward or backward moving direction, even in the presence of the disturbances in the dynamics. In reference regulation mode, a sliding mode heading direction controller is used such that the actual robot can maintain the desired posture against the disturbances. In this way, robust posture stabilization can be achieved at almost all global regions.

  • PDF

자립형 이동로봇 구동을 위한 직류 서보전동기 PLL 속도제어 시스템에 관한 연구 (A Study on PLL Speed Control System of DC Servo Motor for Mobile Robot Drive)

  • 홍순일
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제17권3호
    • /
    • pp.60-69
    • /
    • 1993
  • The speed control associated with dc servo motors for direct-drive applications of mobile robot is considered in this study. Robot is moved by power wheeled steering of two dc servo motors mounted to it. In order to cooperate with micro-computer and to achieve the high-performance operation of dc servo motor, speed control system is composed of a digital Phase Locked Loop and H-type drive circuit. And the motor is driven by Pulse Width Modulations. In controlling PWM, it is modified to compose of H-type drive circuit with feedback diodes and switching transistor and design of control sequence so that it may show linear characteristics. As a result, speed characteristics of motor showed linear features. In order to get data on design of PLL control system, the parameters of 80[W[ motor & robot device is measured by simple software control. The PLL speed control system is schemed and designed by leaner drive circuit and measured parameters. A complete speed control system applied to 80[W] dc servo motor showed good linearity, stability and high response. Also, it is verified that the PLL speed control system has good compatibility as a mobile robot driver.

  • PDF

역진자형 자주로보트의 2차원 평면에서 궤도주행제어에 관한 연구 (Trajectory Tracking Control of the Wheeled Inverse Pendulum Type Self - Contained Mobile Robot in Two Dimensional Plane)

  • 하윤수;유영호;하주식
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제17권5호
    • /
    • pp.44-53
    • /
    • 1993
  • In this paper, we discuss on the control algorithm to make the wheeled inverse pendulum type mobile robot move in two dimensional plane. The robot considered in this paper has two independently driven wheels in same axel which suport and move it-self, and is assumed to have the fyro type sensor to know the inclination algle of the body and rotary encoders to know wheel's rotation angular velocity. The control algorithm is divided into three parts. The first part is for the posture and velocity control for forward-backward direction, the second is the steering control, and the last part is for the control of total system to track the given trajectory. We handle the running velocity control of the robot as part of the posture control to keep the balance because the posture relates deeply with the velocity and can be controlled by the velocities of the wheels. The control problem is analyzed as the tracking control, and the controller is realized with the state feedback and feed-forward of the reference velocity. Constructing the control system which contained one intergrator in forward path, we also realized the control system without observer for the estimation of the accumulated errors in the inclination angle of the body. To prevent the robot from being unstable state by sudden variation of the reference velocity when it starts and stops, or changes velocity, the reference velocity of which acceleration is slowly changing, is ordered to the robot. To control its steering, we give the different reference velocities for both wheels which are calculated from the desired angular velocity of the body. Finally, we presents the experimental results of the experimental robot Yamabico Kurara in which the proposed control algorithm had been implemented.

  • PDF

이륜 역진자 로봇의 각도 및 속도 제어를 위한 신경회로망 PID 제어기 (Neural Network PID Controller for Angle and Speed Control of Two Wheeled Inverted Pendulum Robot)

  • 김영두;안태희;정건우;최영규
    • 한국정보통신학회논문지
    • /
    • 제15권9호
    • /
    • pp.1871-1880
    • /
    • 2011
  • 본 논문에서는 최근 편리하고 간편한 이동수단으로 각광받고 있는 Segway 형태의 이륜 역진자로봇에 대해 기존의 방법보다 더 안정적인 밸런싱과 빠른 속도제어가 가능하도록 제어기를 설계하였다. 먼저 널리 사용되는 PID 제어 구조를 이륜 역진자로봇에 적용하고, 몇 단계로 지정된 탑승자의 각 몸무게에 대해 적절한 PID 제어기 이득을 시행착오적으로 선택하여 밸런싱과 속도제어가 잘 이루어지도록 하였다. 앞에서 지정된 몸무게 이외의 임의의 몸 무게에 대한 PID 제어기 이득값을 구하기 위해 보간 개념으로 신경회로망을 사용하였으며 앞에서 시행착오적으로 구한 제어 이득값을 학습데이터로 사용하였다. 이와 같이 신경회로망을 이용하여 설계된 제어기의 성능을 확인하기 위해서 시뮬레이션 연구를 수행하였으며, 기존의 PID 제어기보다 빨리 밸런싱과 속도제어가 됨을 확인할 수 있었다.

무게 변화에 따른 차륜형 밸런싱 로봇의 제어기 설계 및 실험연구 (Experimental Studies of Controller Design for a Car-like Balancing Robot with a Variable Mass)

  • 김현욱;정슬
    • 한국지능시스템학회논문지
    • /
    • 제20권4호
    • /
    • pp.469-475
    • /
    • 2010
  • 본 논문에서는 두 바퀴로 구동되는 역진자기반의 1인승 차량의 안정적인 균형을 위해 제어기를 설계하였다. 탑승자의 몸무게에 따라 전체 질량이 달라지므로 그에 따른 PID 제어기의 이득값을 실험적으로 구하였다. 이 때 탑승자의 몸무게에 따라 무게 중심이 달라지게 되는데, 이는 밸런싱 각도에 영향을 미치게 된다. 따라서, 안정적인 균형을 이루기 위해서는 몸무게에 따른 목표 밸런싱 각도를 수정하여 제어해야 한다. 다양한 탑승자의 몸무게를 측정하기 위해 차량에 체중계를 달고 측정된 체중 데이터를 컴퓨터로 전송하여 제어기에 적용하였다. 다양한 실험으로 얻은 정보를 사용하여 제어기의 게인 스케줄링을 통하여 보다 안정적인 균형을 유지할 수 있었다.

A Study on an Adaptive Robust Fuzzy Controller with GAs for Path Tracking of a Wheeled Mobile Robot

  • Nguyen, Hoang-Giap;Kim, Won-Ho;Shin, Jin-Ho
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제10권1호
    • /
    • pp.12-18
    • /
    • 2010
  • This paper proposes an adaptive robust fuzzy control scheme for path tracking of a wheeled mobile robot with uncertainties. The robot dynamics including the actuator dynamics is considered in this work. The presented controller is composed of a fuzzy basis function network (FBFN) to approximate an unknown nonlinear function of the robot complete dynamics, an adaptive robust input to overcome the uncertainties, and a stabilizing control input. Genetic algorithms are employed to optimize the fuzzy rules of FBFN. The stability and the convergence of the tracking errors are guaranteed using the Lyapunov stability theory. When the controller is designed, the different parameters for two actuator models in the dynamic equation are taken into account. The proposed control scheme does not require the accurate parameter values for the actuator parameters as well as the robot parameters. The validity and robustness of the proposed control scheme are demonstrated through computer simulations.

A Kalman Filter Localization Method for Mobile Robots

  • Kwon, Sang-Joo;Yang, Kwang-Woong;Park, Sang-Deok;Ryuh, Young-Sun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.973-978
    • /
    • 2005
  • In this paper, we investigate an improved mobile robot localization method using Kalman filter. The highlight of the paper lies in the formulation of combined Kalman filter and its application to mobile robot experiment. The combined Kalman filter is a kind of extended Kalman filter which has an extra degree of freedom in Kalman filtering recursion. It consists of the standard Kalman filter, i.e., the predictor-corrector and the perturbation estimator which reconstructs unknown dynamics in the state transition equation of mobile robot. The combined Kalman filter (CKF) enables to achieve robust localization performance of mobile robot in spite of heavy perturbation such as wheel slip and doorsill crossover which results in large odometric errors. Intrinsically, it has the property of integrating the innovation in Kalman filtering, i.e., the difference between measurement and predicted measurement and thus it is so much advantageous in compensating uncertainties which has not been reflected in the state transition model of mobile robot. After formulation of the CKF recursion equation, we show how the design parameters can be determined and how much beneficial it is through simulation and experiment for a two-wheeled mobile robot under indoor GPS measurement system composed of four ultrasonic satellites. In addition, we discuss what should be considered and what prerequisites are needed to successfully apply the proposed CKF in mobile robot localization.

  • PDF

크로스 커플링을 이용한 이동 로봇의 경로제어에 관한 연구 (A Study on Path Tracking Control for Mobile Robot Using Cross Coupling)

  • 한영석;이쾌희
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 G
    • /
    • pp.2351-2353
    • /
    • 1998
  • This paper suggests the wheel controller for PWS(Power Wheeled Steering) mobile robot. The proposed controller consists of two parts. To control each motor, the sliding mode controller implemented. This method has robustness about modeling error and disturbance, so the velocity tracking is well guaranteed in the presence of varying load. The design of a fuzzy cross-coupling controller for a PWS mobile robot is described here. Fuzzy cross-coupling control directly minimizes the tracking error by coordinating the motion of the two drive wheels. The fuzzy cross-coupling controller has excellent disturbance rejection and therefore is advantageous when the robot is not loaded symmetrically. The capability of the proposed controller was verified through the computer simulation.

  • PDF

Fuzzy Modeling and Control of Differential Driving Wheeled Mobile Robot: To Achieve Performance Objective

  • Kang, Jin-Shig
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제3권2호
    • /
    • pp.166-172
    • /
    • 2003
  • The dynamics of the DDWMR depends on the velocity difference of the two driving wheels. And which is known as a type of non-holonomic equation. By this reason, the treatment of DDWMR had become difficult and conservative. In this paper, the differential-driving wheeled mobile robot is considered. The Takaki-Surgeno fuzzy model and a control method for DDWMR is presented. The suggested controller has three control elements. The first element is fuzzy state feedback designed for eliminating the dependence of time-varying parameter. The second element is weighting controller which is designed for good frequency response. The third controller is PI-controller which is designed for good command following and robustness with un-modeled dynamics. In order for achieving the performance objective, the design of controller is based on the loop-shaping algorithm.

Motion Control of Two Welding Mobile Robot with Seam Tracking Sensor

  • Byuong-Oh;Jeon, Yang-Bae;Suh, Jin-Ho;Oh, Myung-Suk;Kim, Sang-bong
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제4권2호
    • /
    • pp.30-38
    • /
    • 2003
  • This paper proposed PID controller for torch slider and PD controller for motor right wheel. to control the motion of two-wheeled welding mobile robot with seam tracking sensor touched on welding line. The motion control is realized in the view of keeping constant welding velocity and precise seam tracking even though the target welding line is on straight line or curved line. The position and direction of the body of the mottle robot are controlled by using signal errors between seam tracking sensor and body positioning sensor attached on the end of torch slider and body side of the mobile robot, respectively. In turning motion, the body and the torch slider are controlled by using the kinematic model related with two motions of body turning and torch sliding. The straight locomotion is controlled according to eleven control patterns obtained from displacements between two sensors of the seam tracking sensor and the body positioning sensor. The effectiveness is proven through the experimental results fur lattice type welding line. Through the experimental results, we can see that the position value of the electrode end point and the welding velocity are controlled almost constantly both in straight and turning locomotion.