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1. INTRODUCTION 
 

As a first step solution for the robot to navigate 
environments, localization problem answers the question 
“where I am.” Although there were great research works on 
the mobile robot for the commercialization and 
industrialization of non-industrial robots such as home service 
robot, guard robot, and entertainment robot, one of the most 
fundamental problem, the localization to find robot’s position 
is still a hot issue. To get a reliable localization solution with 
cheap cost, an innovation in sensor technology or practical 
alternatives such as RFID environmental sensor seems to have 
priority. However, software algorithms to best utilize given 
sensors information should be evolved also to get best 
estimates of robot location. 
 Due to the simplification when representing the probability 
distribution of the robot’s belief about where it is, the Kalman 
filter localization method is very efficient comparing with the 
general Markov localization method [1]. Moreover, the 
Kalman filter provides the framework for sensor fusion which 
takes into account all the information from heterogeneous 
sensors and produces an optimal output given the statistics of 
system noise and measurement noise. Although the Kalman 
filter has been successfully applied for mobile robot 
localizations [1-3], a drawback of  the Kalman filter is that it 
guarantees minimum variance output of state estimation error 
under the assumption that the system model is perfect and the 
system and measurement noise processes are white and 
Gaussian [4,5]. However, as we know, in many cases it is not 
reasonable to assume white noise, and the perfect system 
knowledge is impossible as well. Hence, as the deviation of 
the assumptions from the real gets larger, the resulting outputs 
will be quite different from the optimal case. Then, what is the 
practical approach to get reliable estimates by Kalman 
filtering even when the assumptions are not valid any more? 
 The motivation of this paper is to discuss a practical 
Kalman filtering method which is able to achieve robust 
localization of mobile robots. The highlight is to adopt a 
perturbation estimator [6,7] in the Kalman filter framework, 
which reconstructs total amount of perturbation which distorts   
nominal system. In the state estimation context, as the system 

model is closer to the actual system behavior, the more 
accurate estimates can be expected. By adding the perturbation 
estimates to the prediction equation (the copy of system 
model) in Kalman filter, the state transition of prediction 
equation will get closer to the real system and resultantly, the 
combined Kalman filter-perturbation estimator can produce 
enhanced localization performance.   
 After describing system model in the following Section 2, a 
set of recursive equations of the Combined Kalman Filter 
(CKF) which includes perturbation estimation process is 
formulated in Section 3 in terms of the given state transition 
model and measurement model of mobile robot. In Section 4, 
characteristics of differential-type mobile robot are considered 
before the CKF is applied to the localization problem. The 
validity of the CKF algorithm is demonstrated through 
simulations and experiment for ultrasonic GPS mobile robot in 
Section 5. Finally, this paper is concluded in Section 6. 

 
2. SYSTEM MODEL OF MOBILE ROBOT 

 
 First, consider the system model for state transition of 
wheeled mobile robot: 
               1 1 1( , )k k k k− − −= +x f x u w             (1) 

which describes the nonlinear kinematic relationship how the 
robot pose is updated given the prior position 1k −x , the 
relative displacement 1k −u  during sampling interval, and the 
unknown system noise 1k −w . Generally, the state vector of 
mobile robot is composed of planar location and orientation as 

k =x [ ]Tk k kx y φ  with respect to a global coordinates 
system and the relative displacement vector can be determined 
using odometry data (encoder output). Considering the system 
noise 1k −w  (perturbation) corrupting the nominal system, it 
includes both deterministic and random errors. Here, we 
assume that the perturbation estimation error k k k−w = w w  
to be discussed next is white Gaussian with zero-mean and 
covariance kQ , i.e., (0, )k kNw Q∼  rather than assuming 
perfect system model and white Gaussian system noise kw  
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as in the conventional Kalman filter (KF). This assumption is 
necessary for the CKF derivation and actually more 
reasonable in practical situations.  
 Second, the measurement model for external sensors 
which detect the global or relative location of the robot or 
environment landmarks or features can be written as   

( )k k k= +z h x v                   (2) 
with the assumption of white Gaussian measurement noise, 

(0, )k kNv R∼ , the same as in the conventional KF. 
 To construct an extended Kalman filter (EKF) for the 
nonlinear system (1) and (2), they should be linearized along 
the nominal trajectory as follows.  

1 1 1k k k k k k

k k k k

− − −= +
= +

x, u,x A x A u + w
z H x v  

          (3) 

where the following Jacobians are evaluated at every nominal 
state in real-time. 

( , )

( )

k k

k

= =
= =

=

∂ ∂⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

∂⎛ ⎞
⎜ ⎟∂⎝ ⎠

x, u,
x x x x
u u u u

x x

f x u f(x,u)A = , A =x u

h x                  H = x

      (4) 

 
3. COMBINED KALMAN FILTER- 

PERTURBATION ESTIMATOR 
 

 For the location update model (1) and measurement model 
(2) of mobile robot, the overall procedure of the CKF 
formulation and how the perturbation estimator works in CKF 
is addressed. 

 
3.1 Predictor-Corrector 
  As is well known, the conventional KF has two steps in 
estimation, predictor and corrector. But the CKF in this paper 
will take the form of predictor-corrector- perturbation 
estimator. First, in terms of the state transition model (1), the 
predictor for prior estimate update ( k

−x ) in CKF is given by  

1 1 1k k k k
− +

− − −= +x f(x ,u ) w ,              (5) 

which requires the perturbation estimate 1k −w  additionally 
unlike in the conventional KF  with the posterior estimate 

1k
+
−x  one step before and the relative displacement estimate. 

 Second, the corrector for posterior estimate update ( k
+x ) 

corresponds to the measurement update process which 
feedbacks the residual between current measurement and prior 
estimate one step before as  

( )k k k k kh+ − −= + −x x K z (x )              (6) 

where the feedback gain kK  called Kalman gain is an 
optimal weighting which minimizes the variance of the 
posterior estimation error. Let k k k

+ += −x x x  the posterior 

estimation error and k k k k
−−z = z H x  the predicted 

measurement error. Then, the orthogonality principle which 
states that the state estimation error is orthogonal to the linear 
vector space of measurements [3,4] implies that 0k kE + =T[x z ] . 
Using the linear system model (3) and the corrector (6), we 
obtain the error equations: 

k k k k k k
+ − −= − +x x K (H x v ) , k k k k

−= +z H x v ,     (7) 

 and thus 

       0T
k k k k k k k kE − − −− + + =[{x K (H x v )}{H x v } ]     (8) 

Considering the uncorrelatedness assumption between state 
and measurement noise, this relationship leads to the Kalman 
gain:  

( ) 1T T
k k k k k k k

−− − +K = P H H P H R          (9) 

with T
k k kE− − −P [x x ] the definition of the prior error 

covariance  and the assumption of (0, )k kNv R∼ . 

 To update the Kalman gain at sampling times, we need the 
propagation equations for the prior error covariance ( k

−P ) and 

the posterior error covariance T
k k kE+ + +P [x x ] . From the 

linear model (3) and predictor (5), we have   

1 1 1k k k k k k k k
− − +

− − −− = + +x, u,x x x A x A u w    (10) 
where the last term means perturbation estimation error 

1 1 1k k k− − −−w w w . Here, it is necessary to assume that k
−x , 

ku ,  kw , and kv  are mutually uncorrelated. Then, by using 

(10), the propagation equation of k
−P  can be derived as 

1 1 1
T T T

k k k k k k k k k kE− − − +
− −= = + +x, x, u, - u,P [x x ] A P A A U A Q  (11) 

with the definitions of [ ]T
k k kEQ w w  and [ ]T

k k kEU q q , 
where it is assumed that the relative displacement ku  has 
random noise uncertainty kq  with (0, )k kNq U∼ . Also by 

using (7), we have the propagation equation of k
+P : 

T
k k k k k kE+ + + −= −P [x x ] (I K H )P        (12) 

 
3.2 Perturbation estimator  

As a matter of fact, the formulation is the former section is 
just the same as the conventional KF except that the predictor 
in (5) includes the perturbation estimate. Now, it is discussed 
how the perturbation estimation process is formulated and 
what benefits it give in Kalman filtering.  
 In the state transition equation in (1), the system noise 

1k −w  denotes all kind of unmodeled effects which perturbs 
the nominal system, 1 1( , )k k k− −=x f x u . Although the 
conventional KF assumes white Gaussian noise, actually the 
system noise contains unknown deterministic error sources 
coming from the system and environment as well as random 
error sources which are colored noises rather than white. The 
perturbation estimator in this section is to reconstruct the 
deterministic noise quantities indirectly.  
 A simple and effective way to detect the perturbation 1k −w  
is to use the inverse model of nominal system. From (1), the 
equivalent perturbation in time-domain can be described as 

, 1 1 1( , )eq k k k k− − −= −w x f x u         (13) 

Then, we can estimate the perturbation by the equation 
1 1 1k eq k k k k− − −= = −,w w x f (x ,u )        (14) 

using one-step delayed signals because 1k+x  is not available 
at the k-th step. This kind of schemes making use of inverse 
model technique to estimate unmodeled dynamics can be 
found in [6-9] according to their applications. When the 
sampling is sufficiently fast comparing with the perturbation 
change, Eq. (14) works well.  
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 By the way, too high frequency components in (14) 
exceeding the bandwidth of Kalman filter dynamics may 
cause adverse effect in the state estimation accuracy of (5). 
Hence, it is reasonable to adjust the perturbation estimate 
input by applying low-pass-filtering to (14) like  

( )1 1 1k eq k k k k− − −= ⋅ = ⋅ −,w F w F x f (x ,u )       (15) 

where the diagonal terms of the matrix F are low pass filters 
(LPFs) with unity DC gain. For example, in case of the mobile 
robot system model, we can let  

( )1 2 3

31 2
1 1 1

1 2 31 1 1

(z), (z),

, , bb b
a z a z a z

diag F F F z

diag − − −− − −

=
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

F ( )
      (16) 

with 1st order filters, where (1) = 1 1 ( 1 3)i i iF a b i→ + = = ~ . 

In the above, if 0, 1i ia b→ → , we have F = I  and the filter 

does not work at all and if 1, 0i ia b→ → , it is the same as the 
situation that the perturbation estimator is not applied.  
 When applying the perturbation estimator (15) in Kalman 
filtering, it is desirable to use more accurate posterior 
estimates after measurement update by the corrector (6). Then, 
we finally have the perturbation estimate update equation for 
CKF as  

( )1 1 1k eq k k k k k
+ + +

− − −= ⋅ = ⋅ −,w F w (x ) F x f (x ,u )     (17) 

 

3.3 Characteristics of perturbation estimator  
 By subtracting (5) from (1), we have the following error 
equation. 

1 11 1k k kk k
− +

− −− −= − +x f (x ) f(x ) w            (18) 

As shown, the disturbing term of the error equation has been 
changed from the real perturbation 1k −w  in conventional KF 

to the residual perturbation 1k −w in CKF, which implies that 
the accuracy of the prior estimate can be improved as far as 
the norm of the error maintains 1 1k k− −<w w  by the 
successful action of the perturbation estimator (17). 
 Second, by substituting (5) into (6), we obtain  

( )1 1 1k k k k k k kh+ + −
− − −= + − +x f(x ,u ) K z (x ) w      (19) 

and using (19), Eq. (17) can be written as  

( )( )1k k k k kh −
−= ⋅ + −w F w K z (x ) ,        (20) 

which illustrates that the perturbation estimator (17) 
intrinsically has the property of integrating the 
innovation k k kh −= −z z (x ) , i.e., the residual of predicted 
measurement error. While, the low pass filter F  in (20) can 
be treated as an integral gain.  
 The innovation feedback term in the corrector (6) make it 
possible that the estimates converge to the real states in an 
optimal way which produces minimum variances of the 
estimation error. However, the optimality is true only when the 
Kalman filter assumptions are valid and not the case when 
there exist non-white system noises. In fact, the innovation 
process in the corrector (6) corresponds to the proportional (P) 
control for the estimation error and the Kalman gain to the 
optimal P gain. On the other hand, the perturbation estimator 
(17) achieves integral control for the innovation as we have 
shown in (20). 

 In feedback control problems, it is common-sense that the 
proportional (P) control is not sufficient and an integral action 
is indispensable to regulate the control error to zero when 
there exist modeling error and external disturbance. Likewise, 
when we have not a reliable system model, other than the 
innovation feedback, another mechanism to compensate the 
effect of uncertainties will help to find true states in Kalman 
filtering and other estimation problems also.  
 In view of estimation problem, it is also common-sense that 
as the system model is closer to the actual system, the more 
accurate estimates can be expected. In this sense, the 
perturbation estimate added in (5) tries to make the prediction 
behavior close to the actual system behavior. As a simple 
example, if a biased deterministic noise is inserted in the 
system noise 1k −w  in (1), the KF produces biased estimates 
since it has no integral function, but the CKF with perturbation 
estimator will show better results due to the integral property 
which has been implied in (18) and (20). 

3.4 Combined Kalman filter-Perturbation estimator 
 By arranging the results in the former section, the CKF 
recursion equations to apply to the mobile robot localization 
are given in Table 1, where it should be noted that the last 
equation can be implemented after expanding the LPF F  an 
example of which was taken in (16).  
 When evaluating the Jacobian matrices to update two 
covariances and Kalman gain, the most recent state estimates 
should be used as follows. 

1 1

( ) ( )

k k k

k k k
+ + −
− −= = =

∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠

x, u,
x x x x x x

f x f(x) h xA = A = H =x u x  (21) 

 On the other hand, performance tuning parameters of CKF 
are kQ , kR , kU , and additionally F for perturbation 
estimator. Conclusively, the perturbation estimation process in 
CKF enhances performance robustness of state estimation by 
providing one more freedom in performance tuning.  
 

TABLE I 
RECURSIVE EQUATIONS OF CKF 

Prior estimate update : 11 1k k k k
− +

− − −= +x f(x ,u ) w  

Prior error covariance update :  

1 1 1
T T T

k k k k k k k k k kE− − − +
− −= = + +x, x, u, - u,P [x x ] A P A A U A Q

Kalman gain update : ( ) 1T T
k k k k k k k

−− − +K = P H H P H R  

Posterior estimate update : ( )k k k k kh+ − −= + −x x K z (x )  

Posterior error covariance update :  
T

k k k k k kE+ + + −= −P [x x ] (I K H )P  
Perturbation estimate update: 

( )1 1 1k eq k k k k k
+ + +

− − −= ⋅ = ⋅ −,w F w (x ) F x f (x ,u )  

 
4. WHEELED MOBILE ROBOT 

 
 In case of differential-type wheeled mobile robots, the 
nonlinear state transition equation in (1) can be described as 
[1,2] 

1
1 1 1 1 , 12

1
1 1 1 1 , 12

1 1 , 1

cos( )
sin( )

k k k k k x k

k k k k k y k

k k k k

x x s w
y y s w

wφ

φ φ
φ φ

φ φ φ

− − − − −

− − − − −

− − −

⎡ ⎤∆ ⋅ + ∆⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥= + ∆ ⋅ + ∆ + ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥ ∆⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (22)  
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where 1ks −∆  and 1kφ −∆  respectively denote linear and 
angular displacement by differential wheels and are the 
components of which the relative displacement vector in (1) 
consists as [ ]1 1 1

T
k k ks φ− − −= ∆ ∆u . 

 Then, the Jacobians in (21) for the linear model are given 
by  

1
1 1 12

1
1 1 12

1 1
1 1 1 1 12 2

1 1
1 1 1 1 12 2

1 0 sin( )
0 1 cos( )
0 0 1

cos( ) sin( )
sin( ) cos( )

0 1

k k k

k k k k

k k k k k

k k k k k k

s
s

s
s

φ φ
φ φ

φ φ φ φ
φ φ φ φ

+
− − −

+
− − −

+ +
− − − − −
+ +
− − − − −

⎡ ⎤−∆ ⋅ + ∆
⎢ ⎥

= ∆ ⋅ + ∆⎢ ⎥
⎢ ⎥
⎣ ⎦
⎡ ⎤+ ∆ −∆ ⋅ + ∆
⎢ ⎥

= + ∆ ∆ ⋅ + ∆⎢ ⎥
⎢ ⎥
⎣ ⎦

x,

u,

A

A

  (23) 

with latest posterior estimates. 
 Second, if external measurement sensors can produce 
full-state of the robot directly like the indoor GPS rather than 
detecting artificial landmarks or natural features in the 
environment, Eq. (2) simply can be written as 

, ,

, ,

, ,

m k k x k

k m k k y k

m k k k

x x v
y y v

vφφ φ

⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥= = + ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦

 z            (24) 

and the Jacobian describing the linear relationship between 
measurements and states becomes the identity matrix:   

1 0 0
0 1 0
0 0 1

k

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

H                (25) 

 For a two-wheeled mobile robot, the linear and angular 
displacement in (22) and (23) can be determined by 

1 ( ) / 2k R Ls s s−∆ = ∆ + ∆  and 1 ( ) /k R Ls s bφ −∆ = ∆ − ∆ given the 
distance b between the two wheels and the right and left wheel 
displacement ( , )R Ls s∆ ∆  which can be calculated, e.g., by 
using encoder pulses. In deriving (11), the uncertain effects in 
relative displacement determination were assumed white 
Gaussian noise [ ]T

k k kEU q q . But, this can be set to zero if 
the errors can be considered as purely deterministic. 
 

5. SIMULATION AND EXPERIMENT 

5.1 Simulation conditions 
 Let the robot follow the circular trajectory with diameter of 
1 m shown in Fig. 5 with zero initial pose 0k k kx y φ= = =  
and at the rate of 50 degrees turn per second. Then, the normal 
displacements ( , )R Ls s∆ ∆  of right and left wheel during 
sampling time can be easily determined. To generate 
odometric errors which perturb nominal state transition 
equation in (22), arbitrary disturbances are added to the 
nominal wheel displacements ( , )R Ls s∆ ∆  as  

1

2

( ) ( ) ( )
( ) ( ) ( )

R R

L L

s t s t d t
s t s t d t
′∆ = ∆ +
′∆ = ∆ +

            (26) 

where the disturbances can be considered to represent all 
kinds of error sources which cannot be detected by odometry 
and which result in range error, turn error and drift error by 
distorting normal odometric displacements. They include both 
deterministic and stochastic factors coming from robot’s 
effectors and also from the environment such as uneven floor 
and obstacle.  
 Figure 1 shows the odometric disturbances for right and left 

wheel after 2 sec where the magnitudes are equal to normal 
displacements ( , )R Ls s∆ ∆  between 2 and 3.5 sec and half of 
them after 3.5 sec. It can be assumed that robot meets a 
threshold at 2 sec and heavy slip occurs after 3.5 sec. In 
simulations, actual behaviour of robot is determined by 
inserting the disturbances in Fig. 1 into the nonlinear system 
(22) without the last unknown term. Then, the system noises 

1k − =w 1 1 1x k y k kw w wφ− − −, , ,( )  are effectively generated. But the 

normal odometric displacements ( , )R Ls s∆ ∆ corresponding to 
the circle trajectory are used in computing all recursion 
equations in Table 1. 
 Secondly, assuming the standard deviation of measurement 
error as , , 5v x v y mmσ σ= =  and , 180v φ

πσ = rad, which is 
related to the sensor spec, the sensor noise covariance is given 

as ( )22 2
180(5 ,5 , )k diag π=R . To make the measurement noise 

in (24) close to the Gaussian noise assumption (0, )k kNv R∼ , 
a random number generation function is used.  While, the 
update rate (sampling time) is 10 msec both in odometry and 
measurement.  
 Performance tuning of CKF can be performed in such a 
way: First fix the value of kR by assuming sensory 
performance as the value and let 0k =U  by considering 
deterministic errors of relative displacements. Then, adjust the 
value of kQ  until good results come about. In succession, 
make the noise level satisfactory by adjusting the cut-off 
frequency of F . Finally, the tuning parameters of CKF which 
result in a good performance after many trials have been 
obtained as the following values.  

( )
( )

31 2
1 1 1 1

1 2 3

22 2 2 2 2
, , ,

22 2 2 2 2
, , ,

2 2
, ,

180

360

0.5
1 1 1 1 0.5

( , , ) (5 ,5 , )

( , , ) (3 ,3 , )
( , ) (0,0)

( , , ) (1,1,1)

k v x v y v

k w x w y w

k q x q y

z z z z
bb b

a a a

diag diag

diag diag
diag diag

diag diag

φ

φ

π

π

σ σ σ

σ σ σ
σ σ

− − − −− − − −

= =

= =

= =

= =

R

Q
U

F

 (27) 

 The KF parameters are the same as the above except that 
the last filters are excluded.  

5.2 Simulation results 
 The numerical results in Figs. 2~4 compare the estimation 
error between conventional KF and proposed CKF in X-, 
Y-position, and orientation, respectively. As shown, when 
large disturbances in Fig. 1 are occurred, the perturbation 
estimator in CKF detects them and the estimates are reflected 
in the prediction equation (5). In the sequel, the prior and 
posterior state estimates have been improved as much 
comparing with KF case. The CKF will become more 
advantageous when the disturbance is the larger. But the effect 
will not be so observable when the system noise is very weak.   
 In the Figs. 2~4, it is natural that prior errors are larger than 
posterior errors after measurement updates. It is notable that 
KF produced large errors which were over measurement errors 
but CKF maintained smaller error values than the 
measurement error. This means that the KF output is not 
reliable if too large perturbation is occurred to the robot.  As 
arranged in Table 2, CKF shows better standard deviation of 
estimates. Finally, Fig. 5 shows how the actual robot trajectory 
deviates from the odometry trajectory computed in the 
algorithm when the disturbances in Fig. 1 corrupts the state 
transition equation (22).  
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Fig. 1 Odometric disturbances. 

( )
( )

1

2

right ( ) ( ) sin(5 ) 0.5sin(10 )
left   ( ) ( ) sin(5 ) 0.5sin(10 )

   
  

R

L

d t s t t t
d t s t t tα α

= ∆ +
= ∆ + + +

 

 
In fact, Kalman theory explains that it produces estimates 

with smaller covariance than sensory covariance for perfect 
system model and white Gaussian noise. Hence, the CKF in 
this paper can be considered as a practical Kalman filtering 
approach which is more reliable when the system noise 
contains excessive deterministic errors. 

 
 

TABLE II  
COMPARISON OF STANDARD DEVIATION OF ERRORS 

  KF CKF 
X (mm) 5.00 2.86 
Y (mm) 7.36 2.89 

Prior 
error 

Phi (deg) 1.16 0.44 
X (mm) 3.12 2.12 
Y (mm) 2.89 2.12 

Posterior 
error 

Phi (deg) 0.44 0.34 
 
 

 
Fig. 2 X-position estimation erorr: (a) prior estimates, (b) 

posterior estimates. 
 

 
Fig. 3 Y-position estimation erorr: (a) prior estimates, (b) 

posterior estimates. 
 
 

 
Fig. 4 Orientation estimation erorr: (a) prior estimates, (b) 

posterior estimates. 
 
 
 

 
Fig. 5 Robot trajectory and odometry trajectory. 
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5.3 Experiment 

The CKF was applied to the localization of the two-wheeled 
mobile robot in Fig. 6. The measurement system is an indoor 
GPS which consists of four ultrasonic satellites (U-SAT) 
installed in ceiling and two receivers equipped in robot. The 
robot navigates rectangular shaped trajectory on the quite even 
floor and the measurement update rate is 500 msec. While the 
tuning parameters used in the experiment were given by   

( )22 2
90(10 ,10 , )k diag π=R  and ( )22 2 0.5

180(2 ,2 , )k diag π=Q  

as the variances for measurement error and for odometric 
movement error, respectively. 
 From the experimental result in Fig. 7, it was found that 
CKF estimates (circle) follows the measurements (cross) 
better than KF estimates (triangle). This indicates indirectly 
that the CKF estimates can be closer to the real trajectory. 
However, it is very hard to say that CKF is better from this 
result since the variance of measurements are too big and 
above all, we have not precision external sensor to produce 
exact robot location and to calibrate the measurements. In 
order to verify the CKF performance more clearly, a different 
experiment which can result in abrupt location change of robot 
is necessary such that the robot goes over a doorsill or bumps 
with some obstacles. 
 

 

Fig. 6 Two-wheeled mobile robot with two U-SAT receivers. 
 

 

 
Fig. 7 Localization experiment:  

cross(red): U-SAT sensor, triangle(green): KF, circle(blue): 
CKF 

6. CONCLUSION 
 

In this paper, we discussed the Kalman filtering localization 
in terms of the proposed combined Kalman filter (CKF). 
Through the investigation of the characteristics of CKF and 
simulation and experimental results, the CKF was proved to 
be very promising for mobile robot localization, specifically 
when there are large modeling errors and large environmental 
disturbances such as from uneven floor, doorsill, and other 
obstacles. One prerequisite so that the CKF with perturbation 
estimator can be successfully applied is that the measurement 
update should be as fast as the robot’s deviation from nominal 
system model can be detected by the inverse model (14). In 
conclusion, the CKF make it possible to enhance the 
robustness of localization performance by providing one more 
freedom, the perturbation estimator, in Kalman filtering.  
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