• Title/Summary/Keyword: Two-surface Model

Search Result 2,271, Processing Time 0.028 seconds

The Nonlinear Stability of Density Fronts in the Ocean

  • Yang Li;Moon, Sung-Euii;Ryu, Chan-Su;Kim, Baek-Jo
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.3 no.2
    • /
    • pp.105-112
    • /
    • 1999
  • Density and temeprature fronts are common features of the ocean. However, frontal dynamics are not quasi-geostrophic because the isopycnal deflections associated with fronts are large compared with the scale height of the hydrostatic geopotential. The frontal geostrophic model, developed by Cushman-Roisin et al.(1992) is generally used fro describing the dynamics of surface-density ocean fronts, whereas the two-layer frontal geostrophic model is used for fronts on a sloping continental shelf. This paper investigates the baroclinic nonlinear stability of surface-density ocean fronts and fronts on a sloping continental shelf using the two-layer frontal geostrophic model mentioned above. Nonlinear stability criteria for the two kinds of fronts are obtained using Arnol'd's (1965; 1969) variational principle and a prior estimate method. This is the first time a nonlinear stability criterion for surface ocean fronts has been established, furthermore, the results obtained for fronts on a sloping bottom are superior to any previous ones.

  • PDF

Integrated Navigation Design Using a Gimbaled Vision/LiDAR System with an Approximate Ground Description Model

  • Yun, Sukchang;Lee, Young Jae;Kim, Chang Joo;Sung, Sangkyung
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.14 no.4
    • /
    • pp.369-378
    • /
    • 2013
  • This paper presents a vision/LiDAR integrated navigation system that provides accurate relative navigation performance on a general ground surface, in GNSS-denied environments. The considered ground surface during flight is approximated as a piecewise continuous model, with flat and slope surface profiles. In its implementation, the presented system consists of a strapdown IMU, and an aided sensor block, consisting of a vision sensor and a LiDAR on a stabilized gimbal platform. Thus, two-dimensional optical flow vectors from the vision sensor, and range information from LiDAR to ground are used to overcome the performance limit of the tactical grade inertial navigation solution without GNSS signal. In filter realization, the INS error model is employed, with measurement vectors containing two-dimensional velocity errors, and one differenced altitude in the navigation frame. In computing the altitude difference, the ground slope angle is estimated in a novel way, through two bisectional LiDAR signals, with a practical assumption representing a general ground profile. Finally, the overall integrated system is implemented, based on the extended Kalman filter framework, and the performance is demonstrated through a simulation study, with an aircraft flight trajectory scenario.

Weight Minimization of a Double-Deck Train Carbody using Response Surface Method (반응표면 모델을 이용한 2층열차 차체의 경량화 설계)

  • Hwang Won-Ju;Kim Hyeong-Jin
    • Proceedings of the KSR Conference
    • /
    • 2005.05a
    • /
    • pp.453-458
    • /
    • 2005
  • Weight minimization of double-deck train carbody is imperative to reduce cost and extend life-time of train. It is required to decide 36 thickness of aluminum extruded panels. However, the design variables are two many to tract. moreover, one execution of structural analysis of double-deck carbody is time-consuming. Therefore, we adopt approximation technique to save computational cost of optimization process. Response surface model is used to apporximate static response of double-deck carbody. To obtain plausible response surface model, orthogonal array is empolyed as design of experiment(DOE). Design improvement by approximate model-based optimization is described. Accuracy and efficiency of optimization by using response surface model are discussed.

  • PDF

Wave propagation at free surface in thermoelastic medium under modified Green-Lindsay model with non-local and two temperature

  • Sachin Kaushal;Rajneesh Kumar;Indu Bala;Gulshan Sharma
    • Structural Engineering and Mechanics
    • /
    • v.90 no.2
    • /
    • pp.209-218
    • /
    • 2024
  • The present paper is focused on the study of the propagation of plane waves in thermoelastic media under a modified Green-Lindsay (MG-L) model having the influence of non-local and two temperature. The problem is formulated for the considered model in dimensionless form and is explained by using the reflection phenomenon. The plane wave solution of these equations indicates the existence of three waves namely Longitudinal waves (LD-Wave), Thermal waves (T-wave), and Shear waves (SV-wave) from a stress-free surface. The variation of amplitude ratios is computed analytically and depicted graphically against the angle of incidence to elaborate the impact of non-local, two temperature, and different theories of thermoelasticity. Some particular cases of interest are also deduced from the present investigation. The present study finds applications in a wide range of problems in engineering and sciences, control theory, vibration mechanics, and continuum mechanics.

Effects of transient thermo reflectance on the thermal responses of metal thin film exposed to ultrashort laser heating (극초단 펄스레이저 광이 입사된 금속박막의 열적반응 중 비정상반사율의 영향)

  • 박승호;국정진
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.4
    • /
    • pp.528-536
    • /
    • 1999
  • This work studies the effects of transient reflectance on the thermal responses of a metal(gold) thin-film during ultrashort laser heating. The heating process is calculated using the conventional conduction model (parabolic one-step: POS), parabolic two-step model (PTS) with and without variable properties, hyperbolic two-step model (HTS). Results from the HTS model are very similar to those from the PTS model, since the laser heating time in this study is greater than the electron relaxation time. PTS model with variable properties, however, results in totally different temperature profiles compared to those from POS models or calculation with constant properties. Transient reflectances are estimated from electron temperature distributions and based on the linear relationship between the electron temperature and complex dielectric constants. Reflectance of the front surface can be changed with respect to dielectric constants, while those of the rear surface remain unchanged.

  • PDF

Design of boundary combined footings of trapezoidal form using a new model

  • Rojas, Arnulfo Luevanos
    • Structural Engineering and Mechanics
    • /
    • v.56 no.5
    • /
    • pp.745-765
    • /
    • 2015
  • This paper presents the design of reinforced concrete combined footings of trapezoidal form subjected to axial load and moments in two directions to each column using a new model to consider soil real pressure acting on the contact surface of the footing; such pressure is presented in terms of an axial load, moment around the axis "X" and moment around the axis "Y" to each column. The classical model considers an axial load and moment around the axis "X" (transverse axis) applied to each column, and when the moments in two directions are taken into account, the maximum pressure throughout the contact surface of the footing is considered the same. The main part of this research is that the proposed model considers soil real pressure and the classical model takes into account the maximum pressure, and also is considered uniform. We conclude that the proposed model is more suited to the real conditions and is more economical.

A Road Surface Temperature Prediction Modeling for Road Weather Information System (도로기상정보체계 활성화를 위한 노면온도예측 모형 개발)

  • Yang, Chung-Heon;Park, Mun-Su;Yun, Deok-Geun
    • Journal of Korean Society of Transportation
    • /
    • v.29 no.2
    • /
    • pp.123-131
    • /
    • 2011
  • This study proposes a model for road surface temperature prediction on basis of the heat-energy balance equation between atmosphere and road surface. The overall model is consisted of two types of modules: 1) Canopy 1 is used to describe heat transfer between soil surface and atmosphere; and 2) Canopy 2 can reflect the characteristics of pavement type. Input data used in the model run is obtained from the Korea Meteorological For model validation, the observed and predicted surface temperature data are compared using data collected on MoonEui Bridge along CheongWon-Sangju Expressway, and the comparison is made on winter and other seasons separately. Analysis results show that average difference between two temperatures lies within ${\pm}2^{\circ}C$ which is considered as appropriate from a micrometeorology point of view. The model proposed in this paper can be adopted as a useful tool in practical applications for winter maintenance. This study being a fundamental research is anticipated to be a starting point for further development of robust surface road temperature prediction algorithms.

Polysilicon anti-sticking structure by grain etching technique (결정립 식각 기술을 이용한 다결정 실리콘 부착 방지 구조)

  • 이영주;박명규;전국진
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.35D no.2
    • /
    • pp.60-69
    • /
    • 1998
  • Polysilicon surface mdoification tecnique is developed to reduce the sticking of microstructures fabricated by micromachining. Modified anti-sticking grain holes are simply formed by two-step dry eth without additional photolithography nor deposition of thin films. Both process-induced sticking and in-use sticking are successfully reduced more than two times by adopting grain holed polysilicon substrate. A sticking model for cantilever beam is derived. This model includes bending moment stems from stress gradient along the thickness directionof structural polysilicon. Because the surface tension of rinse liquid and the surface energy of the solids to be stuk tend to decrease in recently developed anti-sticking techniques, the effect of stress gradient will play an important role to analyze the sticking phenomena. Effect of the temperature during post-release rinse and dry is modelled and verified experimentally. Based on developed anti-sticking polysilicon structure and the sticking model, sticking of microstructure, fabricated by simple wet process including sacrificial layer etch and rinse with deionized water without special equimpment for post-release rinse and dry was alleviated more than 3.5 times.

  • PDF

Constitutive Modeling of AZ31B Magnesium Alloys (AZ31B 마그네슘 합금 판재의 구성식 개발)

  • Lee, M.G.;Chung, K.;Kim, H.Y.
    • Transactions of Materials Processing
    • /
    • v.16 no.4 s.94
    • /
    • pp.234-238
    • /
    • 2007
  • Magnesium alloy sheets in room temperature have unusual mechanical properties such as high in-plane anisotropy/asymmetry of yield stress and hardening behavior. In this paper, the continuum plasticity models considering the plastic behavior of AZ31B Mg alloy sheet were derived. A new hardening law based on modified two-surface model was developed to consider the general stress-strain response of metals including Bauschinger effect, transient behavior and the unusual asymmetry. Three deformation modes observed during the continuous tension/compression tests were mathematically formulated with simplified relations between the state of deformation and their histories. To include the anisotropy and asymmetry of the initial yield stress, the Drucker-Prager's pressure dependent yield surface was modified by adding anisotropic constants.

POM/MICOM Inter-Comparison in Modeling the East Sea Circulation

  • Kim, Kuk-Jin;Seung, Young-Ho;Suk, Moon-Sik
    • Ocean and Polar Research
    • /
    • v.23 no.2
    • /
    • pp.161-172
    • /
    • 2001
  • A model-to-model comparison is attempted between Princeton Ocean Model (POM) and Miami Isopycnic Coordinate Ocean Model (MICOM) as a first step to extend our knowledge of models' performances in studying the East Sea circulation. The two models have fundamentally different numerical schemes and boundary conditions imposed on these models are not exactly the same each other. This study indicates that MICOM has a critical weak point in that it does not reproduce the shallow surface currents properly while it handles the thermohaline processes and associated movements of intermediate and deep waters efficiently. It is suggested that the mixed layer scheme needs to be modified so that it can match with inflow boundary conditions in order to reproduce the surface currents properly in MICOM. POM reproduces the surface current pattern better than MICOM, although the surface currents in POM appear to undergo the unrealistic seasonal variation and have exaggeratedly large vertical scale. These defects seem to arise during the process of adapting POM to the East Sea, and removing these defects is left as a future task.

  • PDF