• Title/Summary/Keyword: Two-surface Model

Search Result 2,267, Processing Time 0.03 seconds

Model and Control of Novel Surface-Motor in Plane Motion

  • Liu, Xuepeng;Mei, Xuesong;Wu, Xutang
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.8 no.2
    • /
    • pp.39-49
    • /
    • 2004
  • Model of the novel Surface motor (SFM) is briefly discussed, and two types of control method including two-order feedback circuit control, indirect acceleration feedback control are analyzed to solve unstable characteristic such as low damp and negative stiffness. The simulation results demonstrate that the system has plain amplitude and wide frequency band arranging from 0 to 8kHz with no resonant peak through indirect acceleration feedback control.

  • PDF

Wavepacket Correlation Function Approach for Nonadiabatic Reactions: Quasi-Jahn-Teller Model

  • Park, Heesoo;Shin, Changkyun;Shin, Seokmin
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.4
    • /
    • pp.1061-1066
    • /
    • 2014
  • Time-dependent formulations of the reactive scattering theory based on the wavepacket correlation functions with the M${\phi}$ller wavepackets for the electronically nonadiabatic reactions are presented. The calculations of state-to-state reactive probabilities for the quasi-Jahn-Teller scattering model system were performed. The conical intersection (CI) effects are investigated by comparing the results of the two-surface nonadiabatic calculations and the single surface adiabatic approximation. It was found that the results of the two-surface nonadiabatic calculations show interesting features in the reaction probability due to the conical intersection. Single surface adiabatic calculations with extended Born-Oppenheimer approximation using simple wavepacket phase factor was found to be able to reproduce the CI effect semi-quantitatively, while the single surface calculations with the usual adiabatic approximation cannot describe the scattering process for the Jahn-Teller model correctly.

Comparison of Adsorption Properties of Adsorbates on Pt(111) and Pt(111)/$\gamma-Al_2O_3$ Surface in the Ethylene Hydrogenation Reaction : MO-Theory

  • 조상준;박상문;박동호;허도성
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.7
    • /
    • pp.733-737
    • /
    • 1998
  • Using an atom superposition and electron delocalization molecular orbital (ASED-MO) method, we have compared adsorption properties of adsorbates on the Pt(Ill) surface with the Pt(lll)/γ-Al203 surface in the ethylene hydrogenation reaction. In two-layer thick model systems, the calculated activation energy of the hydrogenation by the surface platinum hydride is equal to the energy by the hydride over supported platinum/γ-alumina. The transition structure on platinum is very close to the structure on the supported platinum/γ-alumina surface. Hydrogenation by the surface hydride on platinum can take place easily because the activation energy is about 0.5 eV less than hydrogenation by ethylidene. On supported platinum/,y-alumina the activation energy of the hydride mechanism is about 0.61 eV less than that of ethylidene mechanism. In one-layer thick model systems, the activation energy of hydrogenation by ethylidene is about 0.13 eV less than the activation energy of hydride reaction. The calculated activation energy by the hydride over the supported platinum y-alumina is 0. 24 eV higher than the platinum surface. We have found from this result that the catalytic properties of one-layer thick model systems have been influenced by the support but the two-layer thick model systems have not been influenced by the support.

Inelastic Cyclic Behavior of Locally Buckled Steel Members (국부좌굴된 강구조부재의 비탄성 반복 거동)

  • Lee, Eun Taik;Song, Keum Jung
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.2 s.75
    • /
    • pp.139-149
    • /
    • 2005
  • Post-local buckling behavior is a very important consideration in plastic and seismic design of steel structures. It describes the structural behavior up to the final collapse state. In order to assess the actual reliability of structures under severe repeated loading, such as strong earthquakes, it is necessary to evaluate the progressive cyclic deterioration of stiffness as well as the strength and energy dissipation capacity of the structures after local buckling happens. In this study, a simple analytical model developed for predicting post-local buckling behavior for cyclic and non-proportional loading histories, has been proposed. This analytical model uses the stress resultant model based on the two surface model. Analytical moment-curvature relationship using this model compare well with the experimental results in constant amplitude cycling, and linearized energy deterioration which is very important in seismic design can be predicted from the proposed model.

Surface Temperature Retrieval from MASTER Mid-wave Infrared Single Channel Data Using Radiative Transfer Model

  • Kim, Yongseung;Malakar, Nabin;Hulley, Glynn;Hook, Simon
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.1
    • /
    • pp.151-162
    • /
    • 2019
  • Surface temperature has been derived from the MODIS/ASTER airborne simulator (MASTER) mid-wave infrared single channel data using the MODerate resolution atmospheric TRANsmission (MODTRAN) radiative transfer model with input data including the University of Wisconsin (UW) emissivity, the National Centers for Environmental Prediction (NCEP) atmospheric profiles, and solar and line-of-sight geometry. We have selected the study area that covers some surface types such as water, sand, agricultural (vegetated) land, and clouds. Results of the current study show the reasonable geographical distribution of surface temperature over land and water similar to the pattern of the MASTER L2 surface temperature. The thorough quantitative validation of surface temperature retrieved from this study is somehow limited due to the lack of in-situ measurements. One point comparison at the Salton Sea buoy shows that the present estimate is 1.8 K higher than the field data. Further comparison with the MASTER L2 surface temperature over the study area reveals statistically good agreement with mean differences of 4.6 K between two estimates. We further analyze the surface temperature differences between two estimates and find primary factors to be emissivity and atmospheric correction.

An experimental study on the wake structure behind a van type vehicle (Van형 자동차의 후류구조에 대한 실험적 해석(와류 형성을 중심으로))

  • 성봉주;장병희
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.10 no.3
    • /
    • pp.51-59
    • /
    • 1988
  • The wake structure behind a van type vehicle was studied experimentally with a 5-hole yawhead probe. Through an effective calibration method of the 5-hole yawhead probe, the flow properties such as velocity vector, total pressure and static pressure were obtained on two cross sections within the wake. These results combined with the surface flow visualization performed in the previous study, yielded some information about the wake structure. When the model was placed in a stream with zero yaw angle, two counter rotating vortices were observed behind the model which pull down the surface flow on each side of the model. With increasing the yaw angle, the surface flow on the windward side changed to divide the flow in two directions, one flows upward on the upper part and the other flows downward on the lower part of the windward side. Hence a new weak vortex was created on the upper windward side, which resulted 3 vortices within the wake. The size and the strength of the vortices increased with yaw angle.

  • PDF

A Study on the Spatial Distribution Characteristic of Urban Surface Temperature using Remotely Sensed Data and GIS (원격탐사자료와 GIS를 활용한 도시 표면온도의 공간적 분포특성에 관한 연구)

  • Jo, Myung-Hee;Lee, Kwang-Jae;Kim, Woon-Soo
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.4 no.1
    • /
    • pp.57-66
    • /
    • 2001
  • This study used four theoretical models, such as two-point linear model, linear regression model, quadratic regression model and cubic regression model which are presented from The Ministry of Science and Technology, for extraction of urban surface temperature from Landsat TM band 6 image. Through correlation and regression analysis between result of four models and AWS(automatic weather station) observation data, this study could verify spatial distribution characteristic of urban surface temperature using GIS spatial analysis method. The result of analysis for surface temperature by landcover showed that the urban and the barren land belonged to the highest surface temperature class. And there was also -0.85 correlation in the result of correlation analysis between surface temperature and NDVI. In this result, the meteorological environmental characteristics wuld be regarded as one of the important factor in urban planning.

  • PDF

Improving the Quality of Response Surface Analysis of an Experiment for Coffee-supplemented Milk Beverage: II. Heterogeneous Third-order Models and Multi-response Optimization

  • Rheem, Sungsue;Rheem, Insoo;Oh, Sejong
    • Food Science of Animal Resources
    • /
    • v.39 no.2
    • /
    • pp.222-228
    • /
    • 2019
  • This research was motivated by our encounter with the situation where an optimization was done based on statistically non-significant models having poor fits. Such a situation took place in a research to optimize manufacturing conditions for improving storage stability of coffee-supplemented milk beverage by using response surface methodology, where two responses are $Y_1$=particle size and $Y_2$=zeta-potential, two factors are $F_1$=speed of primary homogenization (rpm) and $F_2$=concentration of emulsifier (%), and the optimization objective is to simultaneously minimize $Y_1$ and maximize $Y_2$. For response surface analysis, practically, the second-order polynomial model is almost solely used. But, there exists the cases in which the second-order model fails to provide a good fit, to which remedies are seldom known to researchers. Thus, as an alternative to a failed second-order model, we present the heterogeneous third-order model, which can be used when the experimental plan is a two-factor central composite design having -1, 0, and 1 as the coded levels of factors. And, for multi-response optimization, we suggest a modified desirability function technique. Using these two methods, we have obtained statistical models with improved fits and multi-response optimization results with the predictions better than those in the previous research. Our predicted optimum combination of conditions is ($F_1$, $F_2$)=(5,000, 0.295), which is different from the previous combination. This research is expected to help improve the quality of response surface analysis in experimental sciences including food science of animal resources.

Data Reduction on the Air-side Heat Transfer Coefficients of Heat Exchangers under Dehumidifying Conditions (제습이 수반된 공조용 증발기 습표면의 열전달계수 데이터 리덕션)

  • Kim, Nae-Hyun;Oh, Wang-Kyu;Cho, Jin-Pyo;Park, Hwan-Young;Yoon, Baek
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.1
    • /
    • pp.73-85
    • /
    • 2003
  • Four different methods of reducing the heat transfer coefficients from experimental data under dehumidifying conditions are compared. The four methods consist of two different heat and mass transfer models and two different fin efficiency models. Data are obtained from two heat exchanger samples having plain fins or wave fins. Comparison of the data with the reduction methods revealed that the single potential heat and mass transfer model yielded the humidity independent heat transfer coefficients. Two different fin efficiency models - enthalpy model and humidity model - yielded approximately the same fin efficiencies and accordingly approximately the same heat transfer coefficients. The heat transfer coefficients under wet conditions were approximately the same as those of the dry conditions for the plain fin configuration. For the wave fin configuration, however, wet surface heat transfer coefficients were approximately 12% higher. The pressure drops of the wet surface were 10% to 45% larger than those of the dry surface.

Two Layer Multiquadric-Biharmonic Artificial Neural Network for Area Quasigeoid Surface Approximation with GPS-Levelling Data

  • Deng, Xingsheng;Wang, Xinzhou
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.2
    • /
    • pp.101-106
    • /
    • 2006
  • The geoidal undulations are needed for determining the orthometric heights from the Global Positioning System GPS-derived ellipsoidal heights. There are several methods for geoidal undulation determination. The paper presents a method employing a simple architecture Two Layer Multiquadric-Biharmonic Artificial Neural Network (TLMB-ANN) to approximate an area of 4200 square kilometres quasigeoid surface with GPS-levelling data. Hardy’s Multiquadric-Biharmonic functions is used as the hidden layer neurons’ activation function and Levenberg-Marquardt algorithm is used to train the artificial neural network. In numerical examples five surfaces were compared: the gravimetric geometry hybrid quasigeoid, Support Vector Machine (SVM) model, Hybrid Fuzzy Neural Network (HFNN) model, Traditional Three Layer Artificial Neural Network (ANN) with tanh activation function and TLMB-ANN surface approximation. The effectiveness of TLMB-ANN surface approximation depends on the number of control points. If the number of well-distributed control points is sufficiently large, the results are similar with those obtained by gravity and geometry hybrid method. Importantly, TLMB-ANN surface approximation model possesses good extrapolation performance with high precision.

  • PDF