Browse > Article
http://dx.doi.org/10.5012/bkcs.2014.35.4.1061

Wavepacket Correlation Function Approach for Nonadiabatic Reactions: Quasi-Jahn-Teller Model  

Park, Heesoo (Seoul National University)
Shin, Changkyun (Seoul National University)
Shin, Seokmin (Seoul National University)
Publication Information
Abstract
Time-dependent formulations of the reactive scattering theory based on the wavepacket correlation functions with the M${\phi}$ller wavepackets for the electronically nonadiabatic reactions are presented. The calculations of state-to-state reactive probabilities for the quasi-Jahn-Teller scattering model system were performed. The conical intersection (CI) effects are investigated by comparing the results of the two-surface nonadiabatic calculations and the single surface adiabatic approximation. It was found that the results of the two-surface nonadiabatic calculations show interesting features in the reaction probability due to the conical intersection. Single surface adiabatic calculations with extended Born-Oppenheimer approximation using simple wavepacket phase factor was found to be able to reproduce the CI effect semi-quantitatively, while the single surface calculations with the usual adiabatic approximation cannot describe the scattering process for the Jahn-Teller model correctly.
Keywords
Wavepacket correlation function; Nonadiabatic reaction; Conical intersection;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Herzberg, G.; Longuet-Higgins, H. C. Discuss. Faraday Soc. 1963, 35, 77.   DOI
2 Worth, G. A.; Cederbaum, L. S. Annu. Rev. Phys. Chem. 2004, 55, 127.   DOI   ScienceOn
3 Englman, R. The Jahn-Teller Effect in Molecules and Crystals; Wiley-Interscience: New York, 1972.
4 Baer, R.; Charutz, D. M.; Kosloff, R.; Baer, M. J. Chem. Phys. 1996, 105, 9141.   DOI   ScienceOn
5 Zhang, D. H.; Zhang, J. Z. H. In Dynamics of Molecules and Chemical Reactions, Wyatt, R. E., Zhang, J. Z. H., Eds.; Marcel Dekker: New York, 1996; p 231.
6 Gilbert, M.; Baer, M. J. Phys. Chem. 1994, 98, 12822.   DOI   ScienceOn
7 Adhikari, S.; Billing, G. D. J. Chem. Phys. 1999, 111, 40.   DOI
8 Schatz, G. C. J. Phys. Chem. 1996, 100, 12839.   DOI   ScienceOn
9 Tannor, D. J.; Weeks, D. E. J. Chem. Phys. 1993, 98, 3884.   DOI   ScienceOn
10 Weeks, D. E.; Tannor, D. J. Chem. Phys. Lett. 1993, 207, 301.   DOI   ScienceOn
11 Garashchuk, S.; Tannor, D. Chem. Phys. Lett. 1996, 262, 477.   DOI   ScienceOn
12 Zhang, J. Z. H.; Dai, J.; Zhu, W. J. Phys. Chem. A 1997, 101, 2746.   DOI   ScienceOn
13 Garashchuk, S.; Grossmann, F.; Tannor, D. J. Chem. Soc. Faraday Trans. 1997, 93, 781.   DOI   ScienceOn
14 Garashchuk, S.; Tannor, D. J. J. Chem. Phys. 1999, 110, 2761.   DOI   ScienceOn
15 Garashchuk, S.; Tannor, D. J. Annu. Rev. Phys. Chem. 2000, 51, 553.   DOI   ScienceOn
16 Grossmann, F.; Heller, E. Chem. Phys. Lett. 1995, 241, 45.   DOI   ScienceOn
17 Zhang, D. H.; Light, J. C. J. Chem. Phys. 1996, 104, 6184.   DOI
18 Yoon, Y.; Shin, C.; Shin, S. Chem. Phys. 2006, 326, 425.   DOI   ScienceOn
19 Shin, S.; Light, J. C. J. Chem. Phys. 1994, 101, 2836.   DOI   ScienceOn
20 Shin, C.; Shin, S. J. Chem. Phys. 2000, 113, 6828.
21 Tawa, G. J.; Mielke, S. L.; Truhlar, D. G.; Schwenke, D. W. J. Chem. Phys. 1994, 100, 5751.   DOI   ScienceOn
22 Schatz, G. C. J. Phys. Chem. 1995, 99, 7522.   DOI   ScienceOn
23 Mead, C. A.; Truhlar, D. G. J. Chem. Phys. 1979, 70, 2284.   DOI
24 Nakamura, H. Nonadiabatic Transitions; World Scientific: Singapore, 2002.
25 Jasper, A. W.; Zhu, C.; Nangia, S.; Truhlar, D. G. Faraday Discuss. 2004, 127, 1.   DOI   ScienceOn
26 Teller, E. J. Phys. Chem. 1937, 41, 109.   DOI
27 Longuet-Higgins, H. C. Proc. R. Soc. London, Ser. A 1975, 34, 147.
28 Garashchuk, S.; Tannor, D. J. J. Chem. Phys. 1998, 109, 3028.   DOI   ScienceOn
29 Wu, Y. M.; Lepetit, B.; Kuppermann, A. Chem. Phys. Lett. 1991, 186, 319.   DOI   ScienceOn
30 Herzberg, G. Molecular Spectra and Molecular Structure III. Electronic Spectra and Electronic Structure of Polyatomic Molecules; Van Nostrand Reinhold: New York, 1966; pp 442-444.